Matches in SemOpenAlex for { <https://semopenalex.org/work/W3174328218> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W3174328218 abstract "Following procedural texts written in natural languages is challenging. We must read the whole text to identify the relevant information or identify the instruction flows to complete a task, which is prone to failures. If such texts are structured, we can readily visualize instruction-flows, reason or infer a particular step, or even build automated systems to help novice agents achieve a goal. However, this structure recovery task is a challenge because of such texts' diverse nature. This paper proposes to identify relevant information from such texts and generate information flows between sentences. We built a large annotated procedural text dataset (CTFW) in the cybersecurity domain (3154 documents). This dataset contains valuable instructions regarding software vulnerability analysis experiences. We performed extensive experiments on CTFW with our LM-GNN model variants in multiple settings. To show the generalizability of both this task and our method, we also experimented with procedural texts from two other domains (Maintenance Manual and Cooking), which are substantially different from cybersecurity. Our experiments show that Graph Convolution Network with BERT sentence embeddings outperforms BERT in all three domains" @default.
- W3174328218 created "2021-07-05" @default.
- W3174328218 creator A5017986865 @default.
- W3174328218 creator A5026709102 @default.
- W3174328218 creator A5048580366 @default.
- W3174328218 creator A5063722751 @default.
- W3174328218 creator A5067748241 @default.
- W3174328218 creator A5083735830 @default.
- W3174328218 date "2021-01-01" @default.
- W3174328218 modified "2023-10-18" @default.
- W3174328218 title "Constructing Flow Graphs from Procedural Cybersecurity Texts" @default.
- W3174328218 cites W1973863314 @default.
- W3174328218 cites W2099019682 @default.
- W3174328218 cites W2132986783 @default.
- W3174328218 cites W2148640970 @default.
- W3174328218 cites W2250379752 @default.
- W3174328218 cites W2250965435 @default.
- W3174328218 cites W2252225847 @default.
- W3174328218 cites W2252269235 @default.
- W3174328218 cites W2258064579 @default.
- W3174328218 cites W2343790552 @default.
- W3174328218 cites W2604314403 @default.
- W3174328218 cites W2788919350 @default.
- W3174328218 cites W2798801105 @default.
- W3174328218 cites W2811124557 @default.
- W3174328218 cites W2885594628 @default.
- W3174328218 cites W2899663614 @default.
- W3174328218 cites W2908510526 @default.
- W3174328218 cites W2914912562 @default.
- W3174328218 cites W2918342466 @default.
- W3174328218 cites W2951862794 @default.
- W3174328218 cites W2952254971 @default.
- W3174328218 cites W2955729488 @default.
- W3174328218 cites W2962767366 @default.
- W3174328218 cites W2963341956 @default.
- W3174328218 cites W2963757395 @default.
- W3174328218 cites W2963858333 @default.
- W3174328218 cites W2965373594 @default.
- W3174328218 cites W2965570621 @default.
- W3174328218 cites W2978170550 @default.
- W3174328218 cites W2983506369 @default.
- W3174328218 cites W3000577518 @default.
- W3174328218 cites W3012922460 @default.
- W3174328218 cites W3013645516 @default.
- W3174328218 cites W3023672669 @default.
- W3174328218 cites W3029504896 @default.
- W3174328218 cites W3034364750 @default.
- W3174328218 cites W3087848187 @default.
- W3174328218 cites W3096782167 @default.
- W3174328218 cites W3098391431 @default.
- W3174328218 cites W3105441977 @default.
- W3174328218 cites W3114846425 @default.
- W3174328218 cites W55112844 @default.
- W3174328218 doi "https://doi.org/10.18653/v1/2021.findings-acl.345" @default.
- W3174328218 hasPublicationYear "2021" @default.
- W3174328218 type Work @default.
- W3174328218 sameAs 3174328218 @default.
- W3174328218 citedByCount "0" @default.
- W3174328218 crossrefType "proceedings-article" @default.
- W3174328218 hasAuthorship W3174328218A5017986865 @default.
- W3174328218 hasAuthorship W3174328218A5026709102 @default.
- W3174328218 hasAuthorship W3174328218A5048580366 @default.
- W3174328218 hasAuthorship W3174328218A5063722751 @default.
- W3174328218 hasAuthorship W3174328218A5067748241 @default.
- W3174328218 hasAuthorship W3174328218A5083735830 @default.
- W3174328218 hasBestOaLocation W31743282181 @default.
- W3174328218 hasConcept C199360897 @default.
- W3174328218 hasConcept C2524010 @default.
- W3174328218 hasConcept C27458966 @default.
- W3174328218 hasConcept C33923547 @default.
- W3174328218 hasConcept C38349280 @default.
- W3174328218 hasConcept C38652104 @default.
- W3174328218 hasConcept C41008148 @default.
- W3174328218 hasConceptScore W3174328218C199360897 @default.
- W3174328218 hasConceptScore W3174328218C2524010 @default.
- W3174328218 hasConceptScore W3174328218C27458966 @default.
- W3174328218 hasConceptScore W3174328218C33923547 @default.
- W3174328218 hasConceptScore W3174328218C38349280 @default.
- W3174328218 hasConceptScore W3174328218C38652104 @default.
- W3174328218 hasConceptScore W3174328218C41008148 @default.
- W3174328218 hasLocation W31743282181 @default.
- W3174328218 hasLocation W31743282182 @default.
- W3174328218 hasOpenAccess W3174328218 @default.
- W3174328218 hasPrimaryLocation W31743282181 @default.
- W3174328218 hasRelatedWork W1527862632 @default.
- W3174328218 hasRelatedWork W2080682474 @default.
- W3174328218 hasRelatedWork W2109507516 @default.
- W3174328218 hasRelatedWork W2112962394 @default.
- W3174328218 hasRelatedWork W2118300983 @default.
- W3174328218 hasRelatedWork W2166247150 @default.
- W3174328218 hasRelatedWork W2740990710 @default.
- W3174328218 hasRelatedWork W3137189469 @default.
- W3174328218 hasRelatedWork W4235530921 @default.
- W3174328218 hasRelatedWork W4243252198 @default.
- W3174328218 isParatext "false" @default.
- W3174328218 isRetracted "false" @default.
- W3174328218 magId "3174328218" @default.
- W3174328218 workType "article" @default.