Matches in SemOpenAlex for { <https://semopenalex.org/work/W3174366178> ?p ?o ?g. }
Showing items 1 to 51 of
51
with 100 items per page.
- W3174366178 abstract "In the last two decades, significant effort has been made to solve computationally expensive optimization problems using surrogate models. Regardless of whether surrogates are the primary drivers of an algorithm or improve the convergence of an existing method, most proposed concepts are rather specific and not very generalizable. Some important considerations are selecting a baseline optimization algorithm, a suitable surrogate methodology, and the surrogate's involvement in the overall algorithm design. This paper proposes a probabilistic surrogate-assisted framework (PSAF), demonstrating its applicability to a broad category of single-objective optimization methods. The framework injects knowledge from a surrogate into an existing algorithm through a tournament-based procedure and continuing the optimization run on the surrogate's predictions. The surrogate's involvement is determined by updating a replacement probability based on the accuracy from past iterations. A study of four well-known population-based optimization algorithms with and without the proposed probabilistic surrogate assistance indicates its usefulness in achieving a better convergence. The proposed framework enables the incorporation of surrogates into an existing optimization algorithm and, thus, paves the way for new surrogate-assisted algorithms dealing with challenges in less frequently addressed computationally expensive functions, such as different variable types, large dimensional problems, multiple objectives, and constraints." @default.
- W3174366178 created "2021-07-05" @default.
- W3174366178 creator A5047107500 @default.
- W3174366178 creator A5088394271 @default.
- W3174366178 date "2021-06-26" @default.
- W3174366178 modified "2023-10-18" @default.
- W3174366178 title "PSAF" @default.
- W3174366178 cites W1976160686 @default.
- W3174366178 cites W2000503034 @default.
- W3174366178 cites W2011174137 @default.
- W3174366178 cites W2111526171 @default.
- W3174366178 cites W2112036188 @default.
- W3174366178 cites W2123066915 @default.
- W3174366178 cites W2127130980 @default.
- W3174366178 cites W2151238122 @default.
- W3174366178 cites W2619926566 @default.
- W3174366178 cites W2801550761 @default.
- W3174366178 cites W2903759548 @default.
- W3174366178 cites W2911994132 @default.
- W3174366178 cites W2946914248 @default.
- W3174366178 cites W2948927563 @default.
- W3174366178 cites W3021613070 @default.
- W3174366178 cites W3038909885 @default.
- W3174366178 cites W3103607757 @default.
- W3174366178 doi "https://doi.org/10.1145/3449639.3459297" @default.
- W3174366178 hasPublicationYear "2021" @default.
- W3174366178 type Work @default.
- W3174366178 sameAs 3174366178 @default.
- W3174366178 citedByCount "0" @default.
- W3174366178 crossrefType "proceedings-article" @default.
- W3174366178 hasAuthorship W3174366178A5047107500 @default.
- W3174366178 hasAuthorship W3174366178A5088394271 @default.
- W3174366178 hasConcept C41008148 @default.
- W3174366178 hasConceptScore W3174366178C41008148 @default.
- W3174366178 hasLocation W31743661781 @default.
- W3174366178 hasOpenAccess W3174366178 @default.
- W3174366178 hasPrimaryLocation W31743661781 @default.
- W3174366178 hasRelatedWork W2093578348 @default.
- W3174366178 hasRelatedWork W2130043461 @default.
- W3174366178 hasRelatedWork W2350741829 @default.
- W3174366178 hasRelatedWork W2358668433 @default.
- W3174366178 hasRelatedWork W2376932109 @default.
- W3174366178 hasRelatedWork W2382290278 @default.
- W3174366178 hasRelatedWork W2390279801 @default.
- W3174366178 hasRelatedWork W2748952813 @default.
- W3174366178 hasRelatedWork W2899084033 @default.
- W3174366178 hasRelatedWork W3004735627 @default.
- W3174366178 isParatext "false" @default.
- W3174366178 isRetracted "false" @default.
- W3174366178 magId "3174366178" @default.
- W3174366178 workType "article" @default.