Matches in SemOpenAlex for { <https://semopenalex.org/work/W3174380871> ?p ?o ?g. }
- W3174380871 endingPage "1" @default.
- W3174380871 startingPage "1" @default.
- W3174380871 abstract "Global Navigation Satellite Systems typically perform poorly in urban environments, where the likelihood of line-of-sight conditions between devices and satellites is low. Therefore, alternative location methods are required to achieve good accuracy. We present LocUNet: A convolutional, end-to-end trained neural network (NN) for the localization task, which is able to estimate the position of a user from the received signal strength (RSS) of a small number of Base Stations (BS). Using estimations of pathloss radio maps of the BSs and the RSS measurements of the users to be localized, LocUNet can localize users with state-of-the-art accuracy and enjoys high robustness to inaccuracies in the estimations of radio maps. The proposed method does not require generating RSS fingerprints of each specific area where the localization task is performed and is suitable for real-time applications. Moreover, two novel datasets that allow for numerical evaluations of RSS and ToA methods in realistic urban environments are presented and made publicly available for the research community. By using these datasets, we also provide a fair comparison of state-of-the-art RSS and ToA-based methods in the dense urban scenario and show numerically that LocUNet outperforms all the compared methods." @default.
- W3174380871 created "2021-07-05" @default.
- W3174380871 creator A5001833718 @default.
- W3174380871 creator A5058252389 @default.
- W3174380871 creator A5076496369 @default.
- W3174380871 creator A5090767423 @default.
- W3174380871 date "2023-01-01" @default.
- W3174380871 modified "2023-10-01" @default.
- W3174380871 title "Real-time Outdoor Localization Using Radio Maps: A Deep Learning Approach" @default.
- W3174380871 cites W1490921409 @default.
- W3174380871 cites W1661141943 @default.
- W3174380871 cites W1865176687 @default.
- W3174380871 cites W1901129140 @default.
- W3174380871 cites W1989992903 @default.
- W3174380871 cites W1995534012 @default.
- W3174380871 cites W2007750008 @default.
- W3174380871 cites W2011970787 @default.
- W3174380871 cites W2035382850 @default.
- W3174380871 cites W2035539843 @default.
- W3174380871 cites W2065732095 @default.
- W3174380871 cites W2075403247 @default.
- W3174380871 cites W2100989187 @default.
- W3174380871 cites W2107200608 @default.
- W3174380871 cites W2117206394 @default.
- W3174380871 cites W2124216931 @default.
- W3174380871 cites W2128051927 @default.
- W3174380871 cites W2129055468 @default.
- W3174380871 cites W2133854367 @default.
- W3174380871 cites W2144361468 @default.
- W3174380871 cites W2162718622 @default.
- W3174380871 cites W2163817142 @default.
- W3174380871 cites W2170102584 @default.
- W3174380871 cites W2287252941 @default.
- W3174380871 cites W2612025759 @default.
- W3174380871 cites W2745203826 @default.
- W3174380871 cites W2750632489 @default.
- W3174380871 cites W2763697523 @default.
- W3174380871 cites W2800993700 @default.
- W3174380871 cites W2808289194 @default.
- W3174380871 cites W2940728701 @default.
- W3174380871 cites W2945710797 @default.
- W3174380871 cites W2953396244 @default.
- W3174380871 cites W2964121744 @default.
- W3174380871 cites W2965278870 @default.
- W3174380871 cites W2982951085 @default.
- W3174380871 cites W2996018588 @default.
- W3174380871 cites W2999734205 @default.
- W3174380871 cites W3015691456 @default.
- W3174380871 cites W3035359533 @default.
- W3174380871 cites W3036204794 @default.
- W3174380871 cites W3039288654 @default.
- W3174380871 cites W3040211795 @default.
- W3174380871 cites W3084885896 @default.
- W3174380871 cites W3088197651 @default.
- W3174380871 cites W3093960020 @default.
- W3174380871 cites W3103126557 @default.
- W3174380871 cites W3116894024 @default.
- W3174380871 cites W3131967102 @default.
- W3174380871 cites W99844956 @default.
- W3174380871 doi "https://doi.org/10.1109/twc.2023.3273202" @default.
- W3174380871 hasPublicationYear "2023" @default.
- W3174380871 type Work @default.
- W3174380871 sameAs 3174380871 @default.
- W3174380871 citedByCount "0" @default.
- W3174380871 crossrefType "journal-article" @default.
- W3174380871 hasAuthorship W3174380871A5001833718 @default.
- W3174380871 hasAuthorship W3174380871A5058252389 @default.
- W3174380871 hasAuthorship W3174380871A5076496369 @default.
- W3174380871 hasAuthorship W3174380871A5090767423 @default.
- W3174380871 hasBestOaLocation W31743808712 @default.
- W3174380871 hasConcept C104317684 @default.
- W3174380871 hasConcept C111919701 @default.
- W3174380871 hasConcept C124101348 @default.
- W3174380871 hasConcept C154945302 @default.
- W3174380871 hasConcept C162324750 @default.
- W3174380871 hasConcept C185592680 @default.
- W3174380871 hasConcept C187736073 @default.
- W3174380871 hasConcept C2385561 @default.
- W3174380871 hasConcept C2780451532 @default.
- W3174380871 hasConcept C41008148 @default.
- W3174380871 hasConcept C55493867 @default.
- W3174380871 hasConcept C63479239 @default.
- W3174380871 hasConcept C68649174 @default.
- W3174380871 hasConcept C76155785 @default.
- W3174380871 hasConcept C79403827 @default.
- W3174380871 hasConcept C81363708 @default.
- W3174380871 hasConceptScore W3174380871C104317684 @default.
- W3174380871 hasConceptScore W3174380871C111919701 @default.
- W3174380871 hasConceptScore W3174380871C124101348 @default.
- W3174380871 hasConceptScore W3174380871C154945302 @default.
- W3174380871 hasConceptScore W3174380871C162324750 @default.
- W3174380871 hasConceptScore W3174380871C185592680 @default.
- W3174380871 hasConceptScore W3174380871C187736073 @default.
- W3174380871 hasConceptScore W3174380871C2385561 @default.
- W3174380871 hasConceptScore W3174380871C2780451532 @default.
- W3174380871 hasConceptScore W3174380871C41008148 @default.
- W3174380871 hasConceptScore W3174380871C55493867 @default.
- W3174380871 hasConceptScore W3174380871C63479239 @default.