Matches in SemOpenAlex for { <https://semopenalex.org/work/W3174389373> ?p ?o ?g. }
- W3174389373 endingPage "102395" @default.
- W3174389373 startingPage "102395" @default.
- W3174389373 abstract "Understanding the composition and the changes of New Zealand’s woody vegetation communities is important for effective management. However, past national-scale mapped classifications emphasised mature rather than seral vegetation communities and forests were mapped in relative coarse spatial resolution. The integration of Sentinel-2 and PlanetScope imagery provides an opportunity for forest mapping with low cost and high accuracy. This study aims to investigate the feasibility of the integrated image for detailed forest mapping. Free satellite data (Sentinel-2, PlanetScope, fused data) were compared with commercial data (WorldView-2, and WorldView-2 resampled to Sentinel-2 and PlanetScope spatial resolutions) by conducting pixel-based classification with three machine learning classifiers (Support Vector Machine radial basis function kernel, Random Forest, Artificial Neural Network). The combinations of imagery type and classifier were assessed on their potential for mapping nine land cover classes in podocarp forest in New Zealand’s central north island, including: conifer, low layer vegetation, broadleaf evergreen, highland softwood, wetland vegetation, water, dead tree, lowland softwood, and low-density vegetation and bare soil. Spectral features (single bands and indices), textural features, and an 8 m resolution digital terrain model (DTM) were used in classifications; the relative importance of these input features was also assessed. In this study, it was found that the overall classification accuracy was dependent on the combination of classifier and imagery, with different combinations resulting in a range of accuracies between 0.669 and 0.956. The best overall accuracy was achieved by integrating Sentinel-2 and PlanetScope imagery (0.956) which was even greater than that of WorldView-2 (0.951). The digital terrain model was the most important feature for all scenarios; Gray-Level Co-Occurrence Matrix-Mean was the most important texture variable for WorldView-2 and integrated images. Original bands, as well as GI, Norm-G, and SR-NIRR, were also crucial for vegetation classification." @default.
- W3174389373 created "2021-07-05" @default.
- W3174389373 creator A5043415938 @default.
- W3174389373 creator A5056764556 @default.
- W3174389373 creator A5071688023 @default.
- W3174389373 creator A5072906833 @default.
- W3174389373 date "2021-10-01" @default.
- W3174389373 modified "2023-10-08" @default.
- W3174389373 title "Indigenous forest classification in New Zealand – A comparison of classifiers and sensors" @default.
- W3174389373 cites W1964217023 @default.
- W3174389373 cites W1967621805 @default.
- W3174389373 cites W1988176704 @default.
- W3174389373 cites W2000613913 @default.
- W3174389373 cites W2004553299 @default.
- W3174389373 cites W2007939589 @default.
- W3174389373 cites W2011500029 @default.
- W3174389373 cites W2022944615 @default.
- W3174389373 cites W2028278285 @default.
- W3174389373 cites W2032413422 @default.
- W3174389373 cites W2037513227 @default.
- W3174389373 cites W2040667072 @default.
- W3174389373 cites W2063623478 @default.
- W3174389373 cites W2066724429 @default.
- W3174389373 cites W2080968121 @default.
- W3174389373 cites W2087463450 @default.
- W3174389373 cites W2088304553 @default.
- W3174389373 cites W2089302756 @default.
- W3174389373 cites W2099410216 @default.
- W3174389373 cites W2102662878 @default.
- W3174389373 cites W2130774035 @default.
- W3174389373 cites W2157597779 @default.
- W3174389373 cites W2158755893 @default.
- W3174389373 cites W2163244184 @default.
- W3174389373 cites W2208388837 @default.
- W3174389373 cites W2288583194 @default.
- W3174389373 cites W2418853085 @default.
- W3174389373 cites W2581984641 @default.
- W3174389373 cites W2766138163 @default.
- W3174389373 cites W2791405895 @default.
- W3174389373 cites W2803804780 @default.
- W3174389373 cites W2809401335 @default.
- W3174389373 cites W2898152330 @default.
- W3174389373 cites W2911964244 @default.
- W3174389373 cites W2945897702 @default.
- W3174389373 cites W2946670873 @default.
- W3174389373 cites W2988576146 @default.
- W3174389373 cites W2991166997 @default.
- W3174389373 cites W2998198695 @default.
- W3174389373 cites W2998595112 @default.
- W3174389373 cites W3087890773 @default.
- W3174389373 cites W4248268077 @default.
- W3174389373 cites W51106753 @default.
- W3174389373 doi "https://doi.org/10.1016/j.jag.2021.102395" @default.
- W3174389373 hasPublicationYear "2021" @default.
- W3174389373 type Work @default.
- W3174389373 sameAs 3174389373 @default.
- W3174389373 citedByCount "2" @default.
- W3174389373 countsByYear W31743893732022 @default.
- W3174389373 crossrefType "journal-article" @default.
- W3174389373 hasAuthorship W3174389373A5043415938 @default.
- W3174389373 hasAuthorship W3174389373A5056764556 @default.
- W3174389373 hasAuthorship W3174389373A5071688023 @default.
- W3174389373 hasAuthorship W3174389373A5072906833 @default.
- W3174389373 hasBestOaLocation W31743893731 @default.
- W3174389373 hasConcept C100970517 @default.
- W3174389373 hasConcept C142724271 @default.
- W3174389373 hasConcept C147103442 @default.
- W3174389373 hasConcept C154945302 @default.
- W3174389373 hasConcept C161840515 @default.
- W3174389373 hasConcept C169258074 @default.
- W3174389373 hasConcept C18903297 @default.
- W3174389373 hasConcept C205649164 @default.
- W3174389373 hasConcept C2776133958 @default.
- W3174389373 hasConcept C2778102629 @default.
- W3174389373 hasConcept C2780648208 @default.
- W3174389373 hasConcept C28631016 @default.
- W3174389373 hasConcept C39432304 @default.
- W3174389373 hasConcept C41008148 @default.
- W3174389373 hasConcept C4792198 @default.
- W3174389373 hasConcept C58640448 @default.
- W3174389373 hasConcept C62649853 @default.
- W3174389373 hasConcept C71924100 @default.
- W3174389373 hasConcept C86803240 @default.
- W3174389373 hasConcept C97137747 @default.
- W3174389373 hasConceptScore W3174389373C100970517 @default.
- W3174389373 hasConceptScore W3174389373C142724271 @default.
- W3174389373 hasConceptScore W3174389373C147103442 @default.
- W3174389373 hasConceptScore W3174389373C154945302 @default.
- W3174389373 hasConceptScore W3174389373C161840515 @default.
- W3174389373 hasConceptScore W3174389373C169258074 @default.
- W3174389373 hasConceptScore W3174389373C18903297 @default.
- W3174389373 hasConceptScore W3174389373C205649164 @default.
- W3174389373 hasConceptScore W3174389373C2776133958 @default.
- W3174389373 hasConceptScore W3174389373C2778102629 @default.
- W3174389373 hasConceptScore W3174389373C2780648208 @default.
- W3174389373 hasConceptScore W3174389373C28631016 @default.
- W3174389373 hasConceptScore W3174389373C39432304 @default.
- W3174389373 hasConceptScore W3174389373C41008148 @default.