Matches in SemOpenAlex for { <https://semopenalex.org/work/W3174408035> ?p ?o ?g. }
- W3174408035 endingPage "2321" @default.
- W3174408035 startingPage "2321" @default.
- W3174408035 abstract "Land-cover (LC) mapping in a morphologically heterogeneous landscape area is a challenging task since various LC classes (e.g., crop types in agricultural areas) are spectrally similar. Most research is still mostly relying on optical satellite imagery for these tasks, whereas synthetic aperture radar (SAR) imagery is often neglected. Therefore, this research assessed the classification accuracy using the recent Sentinel-1 (S1) SAR and Sentinel-2 (S2) time-series data for LC mapping, especially vegetation classes. Additionally, ancillary data, such as texture features, spectral indices from S1 and S2, respectively, as well as digital elevation model (DEM), were used in different classification scenarios. Random Forest (RF) was used for classification tasks using a proposed hybrid reference dataset derived from European Land Use and Coverage Area Frame Survey (LUCAS), CORINE, and Land Parcel Identification Systems (LPIS) LC database. Based on the RF variable selection using Mean Decrease Accuracy (MDA), the combination of S1 and S2 data yielded the highest overall accuracy (OA) of 91.78%, with a total disagreement of 8.22%. The most pertinent features for vegetation mapping were GLCM Mean and Variance for S1, NDVI, along with Red and SWIR band for S2, whereas the digital elevation model produced major classification enhancement as an input feature. The results of this study demonstrated that the aforementioned approach (i.e., RF using a hybrid reference dataset) is well-suited for vegetation mapping using Sentinel imagery, which can be applied for large-scale LC classifications." @default.
- W3174408035 created "2021-07-05" @default.
- W3174408035 creator A5020669312 @default.
- W3174408035 creator A5039337836 @default.
- W3174408035 creator A5061813910 @default.
- W3174408035 date "2021-06-13" @default.
- W3174408035 modified "2023-10-18" @default.
- W3174408035 title "Sentinel-1 and 2 Time-Series for Vegetation Mapping Using Random Forest Classification: A Case Study of Northern Croatia" @default.
- W3174408035 cites W1614886892 @default.
- W3174408035 cites W1749887058 @default.
- W3174408035 cites W1831050183 @default.
- W3174408035 cites W1964217023 @default.
- W3174408035 cites W1984670836 @default.
- W3174408035 cites W1994447214 @default.
- W3174408035 cites W1998842586 @default.
- W3174408035 cites W1998979050 @default.
- W3174408035 cites W2000102737 @default.
- W3174408035 cites W2001510610 @default.
- W3174408035 cites W2004553299 @default.
- W3174408035 cites W2011500029 @default.
- W3174408035 cites W2015497137 @default.
- W3174408035 cites W2044465660 @default.
- W3174408035 cites W2058312673 @default.
- W3174408035 cites W2063287762 @default.
- W3174408035 cites W2063623478 @default.
- W3174408035 cites W2065040528 @default.
- W3174408035 cites W2072093516 @default.
- W3174408035 cites W2073431172 @default.
- W3174408035 cites W2077509829 @default.
- W3174408035 cites W2079299474 @default.
- W3174408035 cites W2079921704 @default.
- W3174408035 cites W2080441468 @default.
- W3174408035 cites W2098247895 @default.
- W3174408035 cites W2104763670 @default.
- W3174408035 cites W2104896032 @default.
- W3174408035 cites W2105536892 @default.
- W3174408035 cites W2108094322 @default.
- W3174408035 cites W2109052600 @default.
- W3174408035 cites W2111947859 @default.
- W3174408035 cites W2113410727 @default.
- W3174408035 cites W2115769370 @default.
- W3174408035 cites W2119387367 @default.
- W3174408035 cites W2134146185 @default.
- W3174408035 cites W2136251662 @default.
- W3174408035 cites W2137010787 @default.
- W3174408035 cites W2261059368 @default.
- W3174408035 cites W2342893289 @default.
- W3174408035 cites W2476045487 @default.
- W3174408035 cites W2511578799 @default.
- W3174408035 cites W2538702007 @default.
- W3174408035 cites W2567928366 @default.
- W3174408035 cites W2589453516 @default.
- W3174408035 cites W2602458379 @default.
- W3174408035 cites W2610199124 @default.
- W3174408035 cites W2648242067 @default.
- W3174408035 cites W2734691593 @default.
- W3174408035 cites W2736484122 @default.
- W3174408035 cites W2745131289 @default.
- W3174408035 cites W2750585339 @default.
- W3174408035 cites W2754847445 @default.
- W3174408035 cites W2755803111 @default.
- W3174408035 cites W2766529052 @default.
- W3174408035 cites W2767953525 @default.
- W3174408035 cites W2775069442 @default.
- W3174408035 cites W2803972022 @default.
- W3174408035 cites W2883026662 @default.
- W3174408035 cites W2886438884 @default.
- W3174408035 cites W2888154665 @default.
- W3174408035 cites W2895854890 @default.
- W3174408035 cites W2898962279 @default.
- W3174408035 cites W2904282600 @default.
- W3174408035 cites W2911964244 @default.
- W3174408035 cites W2913976808 @default.
- W3174408035 cites W2914767405 @default.
- W3174408035 cites W2920089766 @default.
- W3174408035 cites W2932298758 @default.
- W3174408035 cites W2941722341 @default.
- W3174408035 cites W2943214363 @default.
- W3174408035 cites W2946413603 @default.
- W3174408035 cites W2953011380 @default.
- W3174408035 cites W2955625807 @default.
- W3174408035 cites W2969945043 @default.
- W3174408035 cites W2977566717 @default.
- W3174408035 cites W2980338915 @default.
- W3174408035 cites W2982571809 @default.
- W3174408035 cites W3005978211 @default.
- W3174408035 cites W3008900036 @default.
- W3174408035 cites W3016161874 @default.
- W3174408035 cites W3036119463 @default.
- W3174408035 cites W3043213779 @default.
- W3174408035 cites W3048036408 @default.
- W3174408035 cites W3085271102 @default.
- W3174408035 cites W3088147678 @default.
- W3174408035 cites W3093136453 @default.
- W3174408035 cites W3133146351 @default.
- W3174408035 cites W3135639021 @default.
- W3174408035 cites W3138513139 @default.
- W3174408035 cites W3158849532 @default.