Matches in SemOpenAlex for { <https://semopenalex.org/work/W3174446487> ?p ?o ?g. }
- W3174446487 endingPage "107922" @default.
- W3174446487 startingPage "107922" @default.
- W3174446487 abstract "Over the past several decades, ecologists have been striving to develop models that accurately describe species-habitat relationships across ecological communities. Statistical models that explain ecological dynamics need to consider the nuances of the complex interactions between communities and ecological factors. Here, we used multiple linear mixed models (LMM), generalized additive models (GAM), multivariate adaptive regression splines (MARS), and artificial neural networks (ANN) to model species richness and diversity of freshwater fishes in eastern and central India. The models were based on fish abundance and associated ecological data over three years across the study regions. We developed global models using all predictors after removing highly correlated variables (Pearson’s r > 0.7). Results revealed conductivity, water temperature, and water velocity as the most important predictive factors of both species richness and diversity. We, then, built two subsets of selected factors to build predictive models for diversity and richness- one variable set containing common significant factors as revealed from the four different modeling methods used and the second, using an automatic feature selection technique. Amongst the modeling methods used in our study, ANN was found to create the best fit models for explaining nonlinearities between response variables and predictors. The importance of variable selection is highlighted, given that subset 1 (common consensual factors) creates more homogeneity in predictions compared to using subset 2 (automated feature selection). Contrary to similar studies in recent years, which show machine learning (ML) methods to typically outperform conventional methods, our results revealed that ANN performed at par with other methods in terms of predictive power. Our findings underline the need for a judicious choice of modeling techniques based on the availability of the data and the ecological communities being studied." @default.
- W3174446487 created "2021-07-05" @default.
- W3174446487 creator A5036889926 @default.
- W3174446487 creator A5049094343 @default.
- W3174446487 date "2021-10-01" @default.
- W3174446487 modified "2023-09-27" @default.
- W3174446487 title "Comparison of regression-based and machine learning techniques to explain alpha diversity of fish communities in streams of central and eastern India" @default.
- W3174446487 cites W1489071415 @default.
- W3174446487 cites W1543335190 @default.
- W3174446487 cites W1591760165 @default.
- W3174446487 cites W1844981334 @default.
- W3174446487 cites W1853015517 @default.
- W3174446487 cites W1895973273 @default.
- W3174446487 cites W1969293821 @default.
- W3174446487 cites W1973747196 @default.
- W3174446487 cites W1978012030 @default.
- W3174446487 cites W1981295327 @default.
- W3174446487 cites W1982901688 @default.
- W3174446487 cites W1985309471 @default.
- W3174446487 cites W1989767924 @default.
- W3174446487 cites W1997199759 @default.
- W3174446487 cites W1999277453 @default.
- W3174446487 cites W2009636568 @default.
- W3174446487 cites W2009757549 @default.
- W3174446487 cites W2011403257 @default.
- W3174446487 cites W2011975142 @default.
- W3174446487 cites W2012548888 @default.
- W3174446487 cites W2015053255 @default.
- W3174446487 cites W2021046802 @default.
- W3174446487 cites W2024757109 @default.
- W3174446487 cites W2026257972 @default.
- W3174446487 cites W2037261986 @default.
- W3174446487 cites W2043358806 @default.
- W3174446487 cites W2048019126 @default.
- W3174446487 cites W2049384829 @default.
- W3174446487 cites W2050434875 @default.
- W3174446487 cites W2053380801 @default.
- W3174446487 cites W2054156370 @default.
- W3174446487 cites W2056116149 @default.
- W3174446487 cites W2056372424 @default.
- W3174446487 cites W2057394427 @default.
- W3174446487 cites W2058927495 @default.
- W3174446487 cites W2060298585 @default.
- W3174446487 cites W2061046949 @default.
- W3174446487 cites W2061277940 @default.
- W3174446487 cites W2070169444 @default.
- W3174446487 cites W2073653417 @default.
- W3174446487 cites W2079776025 @default.
- W3174446487 cites W2080978149 @default.
- W3174446487 cites W2083023281 @default.
- W3174446487 cites W2085428237 @default.
- W3174446487 cites W2087522189 @default.
- W3174446487 cites W2094384128 @default.
- W3174446487 cites W2097821620 @default.
- W3174446487 cites W2097914129 @default.
- W3174446487 cites W2101939155 @default.
- W3174446487 cites W2106071673 @default.
- W3174446487 cites W2106100979 @default.
- W3174446487 cites W2107140090 @default.
- W3174446487 cites W2109024371 @default.
- W3174446487 cites W2114795157 @default.
- W3174446487 cites W2117495240 @default.
- W3174446487 cites W2117989970 @default.
- W3174446487 cites W2120160157 @default.
- W3174446487 cites W2120474334 @default.
- W3174446487 cites W2125223451 @default.
- W3174446487 cites W2125980603 @default.
- W3174446487 cites W2131025003 @default.
- W3174446487 cites W2131412742 @default.
- W3174446487 cites W2136620730 @default.
- W3174446487 cites W2136879021 @default.
- W3174446487 cites W2144749488 @default.
- W3174446487 cites W2146081698 @default.
- W3174446487 cites W2146152315 @default.
- W3174446487 cites W2150278977 @default.
- W3174446487 cites W2152277880 @default.
- W3174446487 cites W2153731457 @default.
- W3174446487 cites W2155988679 @default.
- W3174446487 cites W2156182980 @default.
- W3174446487 cites W2157312350 @default.
- W3174446487 cites W2167060243 @default.
- W3174446487 cites W2167827350 @default.
- W3174446487 cites W2168213791 @default.
- W3174446487 cites W2169053895 @default.
- W3174446487 cites W2203023521 @default.
- W3174446487 cites W2256767201 @default.
- W3174446487 cites W2274117189 @default.
- W3174446487 cites W2279826088 @default.
- W3174446487 cites W2461976058 @default.
- W3174446487 cites W2466213712 @default.
- W3174446487 cites W2473009902 @default.
- W3174446487 cites W2504669470 @default.
- W3174446487 cites W2517008623 @default.
- W3174446487 cites W2519505014 @default.
- W3174446487 cites W2527954661 @default.
- W3174446487 cites W2551842929 @default.
- W3174446487 cites W2587674390 @default.
- W3174446487 cites W2602532853 @default.