Matches in SemOpenAlex for { <https://semopenalex.org/work/W3174460219> ?p ?o ?g. }
- W3174460219 endingPage "4347" @default.
- W3174460219 startingPage "4337" @default.
- W3174460219 abstract "Although endosseous implants are widely used in the clinic, failures still occur and their clinical performance depends on the quality of osseointegration phenomena at the bone-implant interface (BII), which are given by bone ingrowth around the BII. The difficulties in ensuring clinical reliability come from the complex nature of this interphase related to the implant surface roughness and the presence of a soft tissue layer (non-mineralized bone tissue) at the BII. The aim of the present study is to develop a method to assess the soft tissue thickness at the BII based on the analysis of its ultrasonic response using a simulation based-convolution neural network (CNN). A large-annotated dataset was constructed using a two-dimensional finite element model in the frequency domain considering a sinusoidal description of the BII. The proposed network was trained by the synthesized ultrasound responses and was validated by a separate dataset from the training process. The linear correlation between actual and estimated soft tissue thickness shows excellent R2 values equal to 99.52% and 99.65% and a narrow limit of agreement corresponding to [ –2.56, 4.32 μm] and [ –15.75, 30.35 μm] of microscopic and macroscopic roughness, respectively, supporting the reliability of the proposed assessment of osseointegration phenomena." @default.
- W3174460219 created "2021-07-05" @default.
- W3174460219 creator A5006223188 @default.
- W3174460219 creator A5014983623 @default.
- W3174460219 creator A5026660633 @default.
- W3174460219 creator A5045883253 @default.
- W3174460219 creator A5052026571 @default.
- W3174460219 creator A5082780807 @default.
- W3174460219 date "2021-06-01" @default.
- W3174460219 modified "2023-10-01" @default.
- W3174460219 title "Ultrasonic assessment of osseointegration phenomena at the bone-implant interface using convolutional neural network" @default.
- W3174460219 cites W1727290854 @default.
- W3174460219 cites W1963761375 @default.
- W3174460219 cites W1969018694 @default.
- W3174460219 cites W1970146608 @default.
- W3174460219 cites W1974328896 @default.
- W3174460219 cites W1979590528 @default.
- W3174460219 cites W1981097747 @default.
- W3174460219 cites W1998391581 @default.
- W3174460219 cites W2006504975 @default.
- W3174460219 cites W2006822913 @default.
- W3174460219 cites W2011563908 @default.
- W3174460219 cites W2052199289 @default.
- W3174460219 cites W2069406013 @default.
- W3174460219 cites W2069790727 @default.
- W3174460219 cites W2071672587 @default.
- W3174460219 cites W2079507601 @default.
- W3174460219 cites W2085908357 @default.
- W3174460219 cites W2086071614 @default.
- W3174460219 cites W2091445919 @default.
- W3174460219 cites W2103033800 @default.
- W3174460219 cites W2123224923 @default.
- W3174460219 cites W2128912243 @default.
- W3174460219 cites W2133227072 @default.
- W3174460219 cites W2137552304 @default.
- W3174460219 cites W2151892837 @default.
- W3174460219 cites W2161957993 @default.
- W3174460219 cites W2170238827 @default.
- W3174460219 cites W2257979135 @default.
- W3174460219 cites W2268711131 @default.
- W3174460219 cites W2400744180 @default.
- W3174460219 cites W2559017512 @default.
- W3174460219 cites W2563031223 @default.
- W3174460219 cites W2741875052 @default.
- W3174460219 cites W2772734659 @default.
- W3174460219 cites W2801373205 @default.
- W3174460219 cites W2803341739 @default.
- W3174460219 cites W2885858952 @default.
- W3174460219 cites W2978247368 @default.
- W3174460219 cites W2984372834 @default.
- W3174460219 cites W2984814581 @default.
- W3174460219 cites W2991538060 @default.
- W3174460219 cites W2991850652 @default.
- W3174460219 cites W3002436793 @default.
- W3174460219 cites W3009080359 @default.
- W3174460219 cites W3022047430 @default.
- W3174460219 cites W3098357269 @default.
- W3174460219 cites W3102584768 @default.
- W3174460219 cites W3111432887 @default.
- W3174460219 cites W3153625959 @default.
- W3174460219 doi "https://doi.org/10.1121/10.0005272" @default.
- W3174460219 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34241416" @default.
- W3174460219 hasPublicationYear "2021" @default.
- W3174460219 type Work @default.
- W3174460219 sameAs 3174460219 @default.
- W3174460219 citedByCount "3" @default.
- W3174460219 countsByYear W31744602192022 @default.
- W3174460219 countsByYear W31744602192023 @default.
- W3174460219 crossrefType "journal-article" @default.
- W3174460219 hasAuthorship W3174460219A5006223188 @default.
- W3174460219 hasAuthorship W3174460219A5014983623 @default.
- W3174460219 hasAuthorship W3174460219A5026660633 @default.
- W3174460219 hasAuthorship W3174460219A5045883253 @default.
- W3174460219 hasAuthorship W3174460219A5052026571 @default.
- W3174460219 hasAuthorship W3174460219A5082780807 @default.
- W3174460219 hasBestOaLocation W31744602192 @default.
- W3174460219 hasConcept C101414908 @default.
- W3174460219 hasConcept C107365816 @default.
- W3174460219 hasConcept C111919701 @default.
- W3174460219 hasConcept C121332964 @default.
- W3174460219 hasConcept C127413603 @default.
- W3174460219 hasConcept C135628077 @default.
- W3174460219 hasConcept C136229726 @default.
- W3174460219 hasConcept C136948725 @default.
- W3174460219 hasConcept C141071460 @default.
- W3174460219 hasConcept C143753070 @default.
- W3174460219 hasConcept C154945302 @default.
- W3174460219 hasConcept C159985019 @default.
- W3174460219 hasConcept C163258240 @default.
- W3174460219 hasConcept C192562407 @default.
- W3174460219 hasConcept C24890656 @default.
- W3174460219 hasConcept C2781411149 @default.
- W3174460219 hasConcept C41008148 @default.
- W3174460219 hasConcept C43214815 @default.
- W3174460219 hasConcept C50644808 @default.
- W3174460219 hasConcept C62520636 @default.
- W3174460219 hasConcept C66938386 @default.
- W3174460219 hasConcept C71039073 @default.