Matches in SemOpenAlex for { <https://semopenalex.org/work/W3174549708> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W3174549708 abstract "Automatic music transcription (AMT) is one of the challenging problems in Music Information Retrieval with the goal of generating a score-like representation of a polyphonic audio signal. Typically, the starting point of AMT is an acoustic model that computes note likelihoods from feature vectors. In this work, we evaluate the capabilities of Echo State Networks (ESNs) in acoustic modeling of piano music. Our experiments show that the ESN-based models outperform state-of-the-art Convolutional Neural Networks (CNNs) by an absolute improvement of 0.5 (F_{1})-score without using an extra language model. We also discuss that a two-layer ESN, which mimics a hybrid acoustic and language model, achieves better results than the best reference approach that combines Invertible Neural Networks (INNs) with a biGRU language model by an absolute improvement of 0.91 (F_{1})-score." @default.
- W3174549708 created "2021-07-05" @default.
- W3174549708 creator A5046141664 @default.
- W3174549708 creator A5058400740 @default.
- W3174549708 creator A5080796355 @default.
- W3174549708 date "2021-01-01" @default.
- W3174549708 modified "2023-09-24" @default.
- W3174549708 title "Improved Acoustic Modeling for Automatic Piano Music Transcription Using Echo State Networks" @default.
- W3174549708 cites W2110007838 @default.
- W3174549708 cites W2152937398 @default.
- W3174549708 cites W2198584637 @default.
- W3174549708 cites W2746982720 @default.
- W3174549708 cites W2753779507 @default.
- W3174549708 cites W2938774173 @default.
- W3174549708 cites W2939988664 @default.
- W3174549708 cites W2963045359 @default.
- W3174549708 cites W3098226019 @default.
- W3174549708 cites W3127603456 @default.
- W3174549708 doi "https://doi.org/10.1007/978-3-030-85099-9_12" @default.
- W3174549708 hasPublicationYear "2021" @default.
- W3174549708 type Work @default.
- W3174549708 sameAs 3174549708 @default.
- W3174549708 citedByCount "0" @default.
- W3174549708 crossrefType "book-chapter" @default.
- W3174549708 hasAuthorship W3174549708A5046141664 @default.
- W3174549708 hasAuthorship W3174549708A5058400740 @default.
- W3174549708 hasAuthorship W3174549708A5080796355 @default.
- W3174549708 hasConcept C121332964 @default.
- W3174549708 hasConcept C124086623 @default.
- W3174549708 hasConcept C128979739 @default.
- W3174549708 hasConcept C137293760 @default.
- W3174549708 hasConcept C138885662 @default.
- W3174549708 hasConcept C147168706 @default.
- W3174549708 hasConcept C153180895 @default.
- W3174549708 hasConcept C154945302 @default.
- W3174549708 hasConcept C155635449 @default.
- W3174549708 hasConcept C172025690 @default.
- W3174549708 hasConcept C17744445 @default.
- W3174549708 hasConcept C179926584 @default.
- W3174549708 hasConcept C199539241 @default.
- W3174549708 hasConcept C24890656 @default.
- W3174549708 hasConcept C2776359362 @default.
- W3174549708 hasConcept C28490314 @default.
- W3174549708 hasConcept C41008148 @default.
- W3174549708 hasConcept C41895202 @default.
- W3174549708 hasConcept C50644808 @default.
- W3174549708 hasConcept C61328038 @default.
- W3174549708 hasConcept C81363708 @default.
- W3174549708 hasConcept C94625758 @default.
- W3174549708 hasConceptScore W3174549708C121332964 @default.
- W3174549708 hasConceptScore W3174549708C124086623 @default.
- W3174549708 hasConceptScore W3174549708C128979739 @default.
- W3174549708 hasConceptScore W3174549708C137293760 @default.
- W3174549708 hasConceptScore W3174549708C138885662 @default.
- W3174549708 hasConceptScore W3174549708C147168706 @default.
- W3174549708 hasConceptScore W3174549708C153180895 @default.
- W3174549708 hasConceptScore W3174549708C154945302 @default.
- W3174549708 hasConceptScore W3174549708C155635449 @default.
- W3174549708 hasConceptScore W3174549708C172025690 @default.
- W3174549708 hasConceptScore W3174549708C17744445 @default.
- W3174549708 hasConceptScore W3174549708C179926584 @default.
- W3174549708 hasConceptScore W3174549708C199539241 @default.
- W3174549708 hasConceptScore W3174549708C24890656 @default.
- W3174549708 hasConceptScore W3174549708C2776359362 @default.
- W3174549708 hasConceptScore W3174549708C28490314 @default.
- W3174549708 hasConceptScore W3174549708C41008148 @default.
- W3174549708 hasConceptScore W3174549708C41895202 @default.
- W3174549708 hasConceptScore W3174549708C50644808 @default.
- W3174549708 hasConceptScore W3174549708C61328038 @default.
- W3174549708 hasConceptScore W3174549708C81363708 @default.
- W3174549708 hasConceptScore W3174549708C94625758 @default.
- W3174549708 hasLocation W31745497081 @default.
- W3174549708 hasOpenAccess W3174549708 @default.
- W3174549708 hasPrimaryLocation W31745497081 @default.
- W3174549708 hasRelatedWork W11060696 @default.
- W3174549708 hasRelatedWork W11553578 @default.
- W3174549708 hasRelatedWork W11920722 @default.
- W3174549708 hasRelatedWork W2582698 @default.
- W3174549708 hasRelatedWork W7401400 @default.
- W3174549708 hasRelatedWork W7946549 @default.
- W3174549708 hasRelatedWork W7958345 @default.
- W3174549708 hasRelatedWork W8493306 @default.
- W3174549708 hasRelatedWork W8984779 @default.
- W3174549708 hasRelatedWork W9190101 @default.
- W3174549708 isParatext "false" @default.
- W3174549708 isRetracted "false" @default.
- W3174549708 magId "3174549708" @default.
- W3174549708 workType "book-chapter" @default.