Matches in SemOpenAlex for { <https://semopenalex.org/work/W3174653015> ?p ?o ?g. }
- W3174653015 endingPage "3231" @default.
- W3174653015 startingPage "3213" @default.
- W3174653015 abstract "In silico prediction of antileishmanial activity using quantitative structure–activity relationship (QSAR) models has been developed on limited and small datasets. Nowadays, the availability of large and diverse high-throughput screening data provides an opportunity to the scientific community to model this activity from the chemical structure. In this study, we present the first KNIME automated workflow to modeling a large, diverse, and highly imbalanced dataset of compounds with antileishmanial activity. Because the data is strongly biased toward inactive compounds, a novel strategy was implemented based on the selection of different balanced training sets and a further consensus model using single decision trees as the base model and three criteria for output combinations. The decision tree consensus was adopted after comparing its classification performance to consensuses built upon Gaussian-Naïve-Bayes, Support-Vector-Machine, Random-Forest, Gradient-Boost, and Multi-Layer-Perceptron base models. All these consensuses were rigorously validated using internal and external test validation sets and were compared against each other using Friedman and Bonferroni–Dunn statistics. For the retained decision tree-based consensus model, which covers 100% of the chemical space of the dataset and with the lowest consensus level, the overall accuracy statistics for test and external sets were between 71 and 74% and 71 and 76%, respectively, while for a reduced chemical space (21%) and with an incremental consensus level, the accuracy statistics were substantially improved with values for the test and external sets between 86 and 92% and 88 and 92%, respectively. These results highlight the relevance of the consensus model to prioritize a relatively small set of active compounds with high prediction sensitivity using the Incremental Consensus at high level values or to predict as many compounds as possible, lowering the level of Incremental Consensus. Finally, the workflow developed eliminates human bias, improves the procedure reproducibility, and allows other researchers to reproduce our design and use it in their own QSAR problems." @default.
- W3174653015 created "2021-07-05" @default.
- W3174653015 creator A5009956308 @default.
- W3174653015 creator A5025688746 @default.
- W3174653015 creator A5042970171 @default.
- W3174653015 creator A5063334552 @default.
- W3174653015 creator A5086222592 @default.
- W3174653015 date "2021-06-30" @default.
- W3174653015 modified "2023-10-03" @default.
- W3174653015 title "A Novel Automated Framework for QSAR Modeling of Highly Imbalanced <i>Leishmania</i> High-Throughput Screening Data" @default.
- W3174653015 cites W1766594731 @default.
- W3174653015 cites W1835740130 @default.
- W3174653015 cites W1966120807 @default.
- W3174653015 cites W1972929486 @default.
- W3174653015 cites W1981142567 @default.
- W3174653015 cites W1984069235 @default.
- W3174653015 cites W1984428215 @default.
- W3174653015 cites W2005058529 @default.
- W3174653015 cites W2014667091 @default.
- W3174653015 cites W2028491894 @default.
- W3174653015 cites W2035288789 @default.
- W3174653015 cites W2042737702 @default.
- W3174653015 cites W2047679105 @default.
- W3174653015 cites W2052645253 @default.
- W3174653015 cites W2057069496 @default.
- W3174653015 cites W2062338388 @default.
- W3174653015 cites W2073640782 @default.
- W3174653015 cites W2090009771 @default.
- W3174653015 cites W2090642051 @default.
- W3174653015 cites W2093600553 @default.
- W3174653015 cites W2107294966 @default.
- W3174653015 cites W2120534823 @default.
- W3174653015 cites W2127760066 @default.
- W3174653015 cites W2139242327 @default.
- W3174653015 cites W2143697569 @default.
- W3174653015 cites W2143845352 @default.
- W3174653015 cites W2167116890 @default.
- W3174653015 cites W2288568850 @default.
- W3174653015 cites W2393838806 @default.
- W3174653015 cites W2487087946 @default.
- W3174653015 cites W2620760558 @default.
- W3174653015 cites W2753679273 @default.
- W3174653015 cites W2763176027 @default.
- W3174653015 cites W2773535166 @default.
- W3174653015 cites W2784226073 @default.
- W3174653015 cites W2802294916 @default.
- W3174653015 cites W2802518241 @default.
- W3174653015 cites W2804254143 @default.
- W3174653015 cites W2902322176 @default.
- W3174653015 cites W2908880030 @default.
- W3174653015 cites W2918408501 @default.
- W3174653015 cites W2970341349 @default.
- W3174653015 cites W2990075332 @default.
- W3174653015 cites W2991368228 @default.
- W3174653015 cites W2999309192 @default.
- W3174653015 cites W3023983310 @default.
- W3174653015 cites W3093932484 @default.
- W3174653015 cites W4213151958 @default.
- W3174653015 cites W84368778 @default.
- W3174653015 doi "https://doi.org/10.1021/acs.jcim.0c01439" @default.
- W3174653015 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34191520" @default.
- W3174653015 hasPublicationYear "2021" @default.
- W3174653015 type Work @default.
- W3174653015 sameAs 3174653015 @default.
- W3174653015 citedByCount "6" @default.
- W3174653015 countsByYear W31746530152022 @default.
- W3174653015 countsByYear W31746530152023 @default.
- W3174653015 crossrefType "journal-article" @default.
- W3174653015 hasAuthorship W3174653015A5009956308 @default.
- W3174653015 hasAuthorship W3174653015A5025688746 @default.
- W3174653015 hasAuthorship W3174653015A5042970171 @default.
- W3174653015 hasAuthorship W3174653015A5063334552 @default.
- W3174653015 hasAuthorship W3174653015A5086222592 @default.
- W3174653015 hasConcept C107673813 @default.
- W3174653015 hasConcept C113174947 @default.
- W3174653015 hasConcept C119857082 @default.
- W3174653015 hasConcept C12267149 @default.
- W3174653015 hasConcept C124101348 @default.
- W3174653015 hasConcept C134306372 @default.
- W3174653015 hasConcept C154945302 @default.
- W3174653015 hasConcept C158154518 @default.
- W3174653015 hasConcept C164126121 @default.
- W3174653015 hasConcept C169258074 @default.
- W3174653015 hasConcept C17744445 @default.
- W3174653015 hasConcept C199539241 @default.
- W3174653015 hasConcept C207201462 @default.
- W3174653015 hasConcept C33923547 @default.
- W3174653015 hasConcept C41008148 @default.
- W3174653015 hasConcept C50644808 @default.
- W3174653015 hasConcept C52001869 @default.
- W3174653015 hasConcept C60644358 @default.
- W3174653015 hasConcept C60908668 @default.
- W3174653015 hasConcept C74187038 @default.
- W3174653015 hasConcept C81917197 @default.
- W3174653015 hasConcept C84525736 @default.
- W3174653015 hasConcept C86803240 @default.
- W3174653015 hasConcept C93959086 @default.
- W3174653015 hasConcept C99726746 @default.