Matches in SemOpenAlex for { <https://semopenalex.org/work/W3174663897> ?p ?o ?g. }
- W3174663897 abstract "Abstract Machine Learning (ML) techniques are becoming an integral part of rational drug design and discovery. Data-driven modeling regularly outperforms physics-based models for predicting molecular binding affinities, placing ML as a promising tool. Cyclodextrins are nano-cages used to improve the delivery of insoluble or toxic drugs. Due to chemical similarity to proteins, ML approaches could vastly profit to improve affinity prediction and enhance their carriable drug portfolio. Here we evaluate the performance of the Gaussian Process Regression (GPR) to predict the binding affinity of cyclodextrin and known ligands. GPR performance is compared with two well-known ML methods - Support Vector Regression (SVR), and eXtreme Gradient Boosting (XGB). We perform hyperparameter tuning through a Random Search strategy. GPR was able to increase the prediction performance when compared to SVR and XGB, leading to better performance to adjust the data ($R^2$ = 0.803) with low prediction errors (RMSE = 1.811 kJ/mol and MAE = 1.201 kJ/mol)." @default.
- W3174663897 created "2021-07-05" @default.
- W3174663897 creator A5004862221 @default.
- W3174663897 creator A5008576911 @default.
- W3174663897 creator A5019703446 @default.
- W3174663897 creator A5039718466 @default.
- W3174663897 creator A5087173145 @default.
- W3174663897 date "2021-07-02" @default.
- W3174663897 modified "2023-09-25" @default.
- W3174663897 title "Gaussian Processes Regression for Cyclodextrin Host-Guest Binding Prediction" @default.
- W3174663897 cites W105827174 @default.
- W3174663897 cites W127874241 @default.
- W3174663897 cites W1585462851 @default.
- W3174663897 cites W1982996820 @default.
- W3174663897 cites W2019274418 @default.
- W3174663897 cites W2021682413 @default.
- W3174663897 cites W2097998348 @default.
- W3174663897 cites W2153635508 @default.
- W3174663897 cites W2288824982 @default.
- W3174663897 cites W2292355502 @default.
- W3174663897 cites W2375821550 @default.
- W3174663897 cites W2463722425 @default.
- W3174663897 cites W2612973790 @default.
- W3174663897 cites W2762547856 @default.
- W3174663897 cites W2767842869 @default.
- W3174663897 cites W2904883460 @default.
- W3174663897 cites W2944375531 @default.
- W3174663897 cites W2946494266 @default.
- W3174663897 cites W2947746688 @default.
- W3174663897 cites W2979078846 @default.
- W3174663897 cites W2995043008 @default.
- W3174663897 cites W2997279876 @default.
- W3174663897 cites W3003359532 @default.
- W3174663897 cites W3004098428 @default.
- W3174663897 cites W3006817825 @default.
- W3174663897 cites W3007106835 @default.
- W3174663897 cites W3011143677 @default.
- W3174663897 cites W3084064526 @default.
- W3174663897 cites W3102476541 @default.
- W3174663897 cites W3105750548 @default.
- W3174663897 cites W644309761 @default.
- W3174663897 doi "https://doi.org/10.21203/rs.3.rs-372834/v1" @default.
- W3174663897 hasPublicationYear "2021" @default.
- W3174663897 type Work @default.
- W3174663897 sameAs 3174663897 @default.
- W3174663897 citedByCount "0" @default.
- W3174663897 crossrefType "posted-content" @default.
- W3174663897 hasAuthorship W3174663897A5004862221 @default.
- W3174663897 hasAuthorship W3174663897A5008576911 @default.
- W3174663897 hasAuthorship W3174663897A5019703446 @default.
- W3174663897 hasAuthorship W3174663897A5039718466 @default.
- W3174663897 hasAuthorship W3174663897A5087173145 @default.
- W3174663897 hasBestOaLocation W31746638971 @default.
- W3174663897 hasConcept C105795698 @default.
- W3174663897 hasConcept C119857082 @default.
- W3174663897 hasConcept C12267149 @default.
- W3174663897 hasConcept C147597530 @default.
- W3174663897 hasConcept C154945302 @default.
- W3174663897 hasConcept C163716315 @default.
- W3174663897 hasConcept C185592680 @default.
- W3174663897 hasConcept C2779433975 @default.
- W3174663897 hasConcept C33923547 @default.
- W3174663897 hasConcept C41008148 @default.
- W3174663897 hasConcept C43617362 @default.
- W3174663897 hasConcept C46686674 @default.
- W3174663897 hasConcept C554190296 @default.
- W3174663897 hasConcept C61326573 @default.
- W3174663897 hasConcept C71813955 @default.
- W3174663897 hasConcept C76155785 @default.
- W3174663897 hasConcept C81692654 @default.
- W3174663897 hasConcept C83546350 @default.
- W3174663897 hasConcept C8642999 @default.
- W3174663897 hasConceptScore W3174663897C105795698 @default.
- W3174663897 hasConceptScore W3174663897C119857082 @default.
- W3174663897 hasConceptScore W3174663897C12267149 @default.
- W3174663897 hasConceptScore W3174663897C147597530 @default.
- W3174663897 hasConceptScore W3174663897C154945302 @default.
- W3174663897 hasConceptScore W3174663897C163716315 @default.
- W3174663897 hasConceptScore W3174663897C185592680 @default.
- W3174663897 hasConceptScore W3174663897C2779433975 @default.
- W3174663897 hasConceptScore W3174663897C33923547 @default.
- W3174663897 hasConceptScore W3174663897C41008148 @default.
- W3174663897 hasConceptScore W3174663897C43617362 @default.
- W3174663897 hasConceptScore W3174663897C46686674 @default.
- W3174663897 hasConceptScore W3174663897C554190296 @default.
- W3174663897 hasConceptScore W3174663897C61326573 @default.
- W3174663897 hasConceptScore W3174663897C71813955 @default.
- W3174663897 hasConceptScore W3174663897C76155785 @default.
- W3174663897 hasConceptScore W3174663897C81692654 @default.
- W3174663897 hasConceptScore W3174663897C83546350 @default.
- W3174663897 hasConceptScore W3174663897C8642999 @default.
- W3174663897 hasLocation W31746638971 @default.
- W3174663897 hasOpenAccess W3174663897 @default.
- W3174663897 hasPrimaryLocation W31746638971 @default.
- W3174663897 hasRelatedWork W1993966230 @default.
- W3174663897 hasRelatedWork W1996541855 @default.
- W3174663897 hasRelatedWork W2081545345 @default.
- W3174663897 hasRelatedWork W3174663897 @default.
- W3174663897 hasRelatedWork W3195168932 @default.
- W3174663897 hasRelatedWork W4226364668 @default.