Matches in SemOpenAlex for { <https://semopenalex.org/work/W3174765561> ?p ?o ?g. }
- W3174765561 endingPage "6922" @default.
- W3174765561 startingPage "6916" @default.
- W3174765561 abstract "In planetary science, it is an important basic work to recognize and classify the features of topography and geomorphology from the massive data of planetary remote sensing. Therefore, this article proposes a lightweight model based on VGG-16, which can selectively extract some features of remote sensing images, remove redundant information, and recognize and classify remote sensing images. This model not only ensures the accuracy, but also reduces the parameters of the model. According to our experimental results, our model has a great improvement in remote sensing image classification, from the original accuracy of 85%-98% now. At the same time, the model has a great improvement in convergence speed and classification performance. By inputting the remote sensing image data of ultra-low pixels (64 * 64) into our model, we prove that our model still has a high accuracy rate of 95% for the remote sensing image with ultra-low pixels and less feature points. Therefore, the model has a good application prospect in remote sensing image fine classification, very low pixel, and less image classification." @default.
- W3174765561 created "2021-07-05" @default.
- W3174765561 creator A5015772215 @default.
- W3174765561 creator A5020448950 @default.
- W3174765561 creator A5024313903 @default.
- W3174765561 creator A5031762415 @default.
- W3174765561 creator A5038347628 @default.
- W3174765561 creator A5043348210 @default.
- W3174765561 creator A5064278331 @default.
- W3174765561 creator A5072643877 @default.
- W3174765561 creator A5072756035 @default.
- W3174765561 date "2021-01-01" @default.
- W3174765561 modified "2023-10-05" @default.
- W3174765561 title "A Lightweight Model of VGG-16 for Remote Sensing Image Classification" @default.
- W3174765561 cites W2015386604 @default.
- W3174765561 cites W2070452328 @default.
- W3174765561 cites W2283168383 @default.
- W3174765561 cites W2294802479 @default.
- W3174765561 cites W2295862745 @default.
- W3174765561 cites W2347115704 @default.
- W3174765561 cites W2411876745 @default.
- W3174765561 cites W2512351403 @default.
- W3174765561 cites W2527524734 @default.
- W3174765561 cites W2599857737 @default.
- W3174765561 cites W2608092940 @default.
- W3174765561 cites W2620858446 @default.
- W3174765561 cites W2740144340 @default.
- W3174765561 cites W2768211636 @default.
- W3174765561 cites W2795547044 @default.
- W3174765561 cites W2804902458 @default.
- W3174765561 cites W2891090518 @default.
- W3174765561 cites W2897819140 @default.
- W3174765561 cites W2901458284 @default.
- W3174765561 cites W2902746003 @default.
- W3174765561 cites W2964194231 @default.
- W3174765561 cites W2977355106 @default.
- W3174765561 cites W2994639710 @default.
- W3174765561 cites W3004658916 @default.
- W3174765561 cites W3040988483 @default.
- W3174765561 cites W3047443805 @default.
- W3174765561 cites W3048631361 @default.
- W3174765561 cites W3100245404 @default.
- W3174765561 cites W3100714546 @default.
- W3174765561 cites W3101012758 @default.
- W3174765561 cites W3103856189 @default.
- W3174765561 cites W3105021316 @default.
- W3174765561 cites W3105577662 @default.
- W3174765561 cites W3111085784 @default.
- W3174765561 cites W3119125170 @default.
- W3174765561 cites W3140885850 @default.
- W3174765561 doi "https://doi.org/10.1109/jstars.2021.3090085" @default.
- W3174765561 hasPublicationYear "2021" @default.
- W3174765561 type Work @default.
- W3174765561 sameAs 3174765561 @default.
- W3174765561 citedByCount "31" @default.
- W3174765561 countsByYear W31747655612022 @default.
- W3174765561 countsByYear W31747655612023 @default.
- W3174765561 crossrefType "journal-article" @default.
- W3174765561 hasAuthorship W3174765561A5015772215 @default.
- W3174765561 hasAuthorship W3174765561A5020448950 @default.
- W3174765561 hasAuthorship W3174765561A5024313903 @default.
- W3174765561 hasAuthorship W3174765561A5031762415 @default.
- W3174765561 hasAuthorship W3174765561A5038347628 @default.
- W3174765561 hasAuthorship W3174765561A5043348210 @default.
- W3174765561 hasAuthorship W3174765561A5064278331 @default.
- W3174765561 hasAuthorship W3174765561A5072643877 @default.
- W3174765561 hasAuthorship W3174765561A5072756035 @default.
- W3174765561 hasBestOaLocation W31747655611 @default.
- W3174765561 hasConcept C115961682 @default.
- W3174765561 hasConcept C127313418 @default.
- W3174765561 hasConcept C138885662 @default.
- W3174765561 hasConcept C153180895 @default.
- W3174765561 hasConcept C154945302 @default.
- W3174765561 hasConcept C159078339 @default.
- W3174765561 hasConcept C160633673 @default.
- W3174765561 hasConcept C183365957 @default.
- W3174765561 hasConcept C2776401178 @default.
- W3174765561 hasConcept C31972630 @default.
- W3174765561 hasConcept C41008148 @default.
- W3174765561 hasConcept C41895202 @default.
- W3174765561 hasConcept C62649853 @default.
- W3174765561 hasConcept C75294576 @default.
- W3174765561 hasConceptScore W3174765561C115961682 @default.
- W3174765561 hasConceptScore W3174765561C127313418 @default.
- W3174765561 hasConceptScore W3174765561C138885662 @default.
- W3174765561 hasConceptScore W3174765561C153180895 @default.
- W3174765561 hasConceptScore W3174765561C154945302 @default.
- W3174765561 hasConceptScore W3174765561C159078339 @default.
- W3174765561 hasConceptScore W3174765561C160633673 @default.
- W3174765561 hasConceptScore W3174765561C183365957 @default.
- W3174765561 hasConceptScore W3174765561C2776401178 @default.
- W3174765561 hasConceptScore W3174765561C31972630 @default.
- W3174765561 hasConceptScore W3174765561C41008148 @default.
- W3174765561 hasConceptScore W3174765561C41895202 @default.
- W3174765561 hasConceptScore W3174765561C62649853 @default.
- W3174765561 hasConceptScore W3174765561C75294576 @default.
- W3174765561 hasFunder F4320320717 @default.
- W3174765561 hasFunder F4320328635 @default.