Matches in SemOpenAlex for { <https://semopenalex.org/work/W3174811924> ?p ?o ?g. }
- W3174811924 abstract "Abstract The investigation of visual categorization has recently been aided by the introduction of deep convolutional neural networks (CNNs), which achieve unprecedented accuracy in picture classification after extensive training. Even if the architecture of CNNs is inspired by the organization of the visual brain, the similarity between CNN and human visual processing remains unclear. Here, we investigated this issue by engaging humans and CNNs in a two‐class visual categorization task. To this end, pictures containing animals or vehicles were modified to contain only low/high spatial frequency (HSF) information, or were scrambled in the phase of the spatial frequency spectrum. For all types of degradation, accuracy increased as degradation was reduced for both humans and CNNs; however, the thresholds for accurate categorization varied between humans and CNNs. More remarkable differences were observed for HSF information compared to the other two types of degradation, both in terms of overall accuracy and image‐level agreement between humans and CNNs. The difficulty with which the CNNs were shown to categorize high‐passed natural scenes was reduced by picture whitening, a procedure which is inspired by how visual systems process natural images. The results are discussed concerning the adaptation to regularities in the visual environment (scene statistics); if the visual characteristics of the environment are not learned by CNNs, their visual categorization may depend only on a subset of the visual information on which humans rely, for example, on low spatial frequency information." @default.
- W3174811924 created "2021-07-05" @default.
- W3174811924 creator A5030507840 @default.
- W3174811924 creator A5032626782 @default.
- W3174811924 creator A5048080199 @default.
- W3174811924 creator A5062424045 @default.
- W3174811924 date "2021-06-01" @default.
- W3174811924 modified "2023-10-16" @default.
- W3174811924 title "Do Humans and Deep Convolutional Neural Networks Use Visual Information Similarly for the Categorization of Natural Scenes?" @default.
- W3174811924 cites W1498436455 @default.
- W3174811924 cites W1715013381 @default.
- W3174811924 cites W1849277567 @default.
- W3174811924 cites W1932198206 @default.
- W3174811924 cites W1965686001 @default.
- W3174811924 cites W1968661899 @default.
- W3174811924 cites W1971443254 @default.
- W3174811924 cites W1976389138 @default.
- W3174811924 cites W1977452352 @default.
- W3174811924 cites W1984075533 @default.
- W3174811924 cites W1990908908 @default.
- W3174811924 cites W1994979988 @default.
- W3174811924 cites W2009763810 @default.
- W3174811924 cites W2010758504 @default.
- W3174811924 cites W2012401231 @default.
- W3174811924 cites W2018762602 @default.
- W3174811924 cites W2022625505 @default.
- W3174811924 cites W2040036684 @default.
- W3174811924 cites W2042925217 @default.
- W3174811924 cites W2053970474 @default.
- W3174811924 cites W2058616551 @default.
- W3174811924 cites W2059799772 @default.
- W3174811924 cites W2066380143 @default.
- W3174811924 cites W2071852779 @default.
- W3174811924 cites W2074008610 @default.
- W3174811924 cites W2083433785 @default.
- W3174811924 cites W2091845343 @default.
- W3174811924 cites W2093652547 @default.
- W3174811924 cites W2100495367 @default.
- W3174811924 cites W2104636679 @default.
- W3174811924 cites W2107990008 @default.
- W3174811924 cites W2108598243 @default.
- W3174811924 cites W2112796928 @default.
- W3174811924 cites W2113466552 @default.
- W3174811924 cites W2113894009 @default.
- W3174811924 cites W2118563997 @default.
- W3174811924 cites W2125680649 @default.
- W3174811924 cites W2130055919 @default.
- W3174811924 cites W2131855543 @default.
- W3174811924 cites W2135177275 @default.
- W3174811924 cites W2136298096 @default.
- W3174811924 cites W2137389496 @default.
- W3174811924 cites W2138874178 @default.
- W3174811924 cites W2140574787 @default.
- W3174811924 cites W2142986000 @default.
- W3174811924 cites W2144016834 @default.
- W3174811924 cites W2148168615 @default.
- W3174811924 cites W2151035455 @default.
- W3174811924 cites W2151788312 @default.
- W3174811924 cites W2158646162 @default.
- W3174811924 cites W2159107847 @default.
- W3174811924 cites W2161381512 @default.
- W3174811924 cites W2166206801 @default.
- W3174811924 cites W2167034998 @default.
- W3174811924 cites W2167553001 @default.
- W3174811924 cites W2169315800 @default.
- W3174811924 cites W2169957922 @default.
- W3174811924 cites W2194775991 @default.
- W3174811924 cites W2274405424 @default.
- W3174811924 cites W2292156878 @default.
- W3174811924 cites W2327355331 @default.
- W3174811924 cites W2338257668 @default.
- W3174811924 cites W2343204383 @default.
- W3174811924 cites W2412480261 @default.
- W3174811924 cites W2564487272 @default.
- W3174811924 cites W2576620013 @default.
- W3174811924 cites W2578937925 @default.
- W3174811924 cites W2583729509 @default.
- W3174811924 cites W2745482427 @default.
- W3174811924 cites W2763767712 @default.
- W3174811924 cites W2779304466 @default.
- W3174811924 cites W2789332809 @default.
- W3174811924 cites W2884367402 @default.
- W3174811924 cites W2891061472 @default.
- W3174811924 cites W2903867357 @default.
- W3174811924 cites W2920926741 @default.
- W3174811924 cites W2951506741 @default.
- W3174811924 cites W2954996726 @default.
- W3174811924 cites W2963446712 @default.
- W3174811924 cites W2975797828 @default.
- W3174811924 cites W3035198315 @default.
- W3174811924 cites W3094477347 @default.
- W3174811924 cites W4231299465 @default.
- W3174811924 cites W4232132600 @default.
- W3174811924 cites W75343719 @default.
- W3174811924 cites W785666128 @default.
- W3174811924 doi "https://doi.org/10.1111/cogs.13009" @default.
- W3174811924 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8365760" @default.
- W3174811924 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34170027" @default.
- W3174811924 hasPublicationYear "2021" @default.
- W3174811924 type Work @default.