Matches in SemOpenAlex for { <https://semopenalex.org/work/W3174912518> ?p ?o ?g. }
Showing items 1 to 54 of
54
with 100 items per page.
- W3174912518 endingPage "204" @default.
- W3174912518 startingPage "191" @default.
- W3174912518 abstract "The security over data is now a major concern for all applications. Attacks over data are going to be increasing day by day. Therefore, there is a need of security mechanism over all devices responsible for transfer of data over the network. An Intrusion Detection System (IDS) has been designed in order to detect different types of attacks over the system. IDS may be categorized Network Intrusion Detection System (NIDS) and Host Intrusion Detection System (HIDS). NIDS and HIDS are employed by the user depending on the requirement such as whether the user aims to find attacks over the whole network or just over a host. An IDS best works over Software Defined Networks (SDN) rather than traditional networks. Many of today’s applications reside over SDN. SDN is preferred over traditional because of its flexibility and agile property. This chapter mainly introduces various algorithms of intrusion detection like support vector machine (SVM), random forest (RF), K-means, Principal Component Analysis (PCA) and Self-Organizing Map (SOM), which are basically machine learning (ML) algorithms. ML algorithms may be supervised, unsupervised and semi-supervised learning algorithms. Besides ML algorithms, this chapter also introduces some deep learning algorithms used for intrusion detection. Examples are Recurrent Neural Network (RNN) and Deep Belief Network (DBN) etc." @default.
- W3174912518 created "2021-07-05" @default.
- W3174912518 creator A5001930117 @default.
- W3174912518 creator A5023926588 @default.
- W3174912518 creator A5067284049 @default.
- W3174912518 date "2021-06-18" @default.
- W3174912518 modified "2023-10-14" @default.
- W3174912518 title "Anomaly Detection over SDN Using Machine Learning and Deep Learning for Securing Smart City" @default.
- W3174912518 doi "https://doi.org/10.1201/9781003032397-13" @default.
- W3174912518 hasPublicationYear "2021" @default.
- W3174912518 type Work @default.
- W3174912518 sameAs 3174912518 @default.
- W3174912518 citedByCount "5" @default.
- W3174912518 countsByYear W31749125182022 @default.
- W3174912518 countsByYear W31749125182023 @default.
- W3174912518 crossrefType "book-chapter" @default.
- W3174912518 hasAuthorship W3174912518A5001930117 @default.
- W3174912518 hasAuthorship W3174912518A5023926588 @default.
- W3174912518 hasAuthorship W3174912518A5067284049 @default.
- W3174912518 hasConcept C108583219 @default.
- W3174912518 hasConcept C119857082 @default.
- W3174912518 hasConcept C121332964 @default.
- W3174912518 hasConcept C12997251 @default.
- W3174912518 hasConcept C154945302 @default.
- W3174912518 hasConcept C26873012 @default.
- W3174912518 hasConcept C41008148 @default.
- W3174912518 hasConcept C739882 @default.
- W3174912518 hasConceptScore W3174912518C108583219 @default.
- W3174912518 hasConceptScore W3174912518C119857082 @default.
- W3174912518 hasConceptScore W3174912518C121332964 @default.
- W3174912518 hasConceptScore W3174912518C12997251 @default.
- W3174912518 hasConceptScore W3174912518C154945302 @default.
- W3174912518 hasConceptScore W3174912518C26873012 @default.
- W3174912518 hasConceptScore W3174912518C41008148 @default.
- W3174912518 hasConceptScore W3174912518C739882 @default.
- W3174912518 hasLocation W31749125181 @default.
- W3174912518 hasOpenAccess W3174912518 @default.
- W3174912518 hasPrimaryLocation W31749125181 @default.
- W3174912518 hasRelatedWork W2795261237 @default.
- W3174912518 hasRelatedWork W3014300295 @default.
- W3174912518 hasRelatedWork W3164822677 @default.
- W3174912518 hasRelatedWork W4223943233 @default.
- W3174912518 hasRelatedWork W4225161397 @default.
- W3174912518 hasRelatedWork W4312200629 @default.
- W3174912518 hasRelatedWork W4360585206 @default.
- W3174912518 hasRelatedWork W4364306694 @default.
- W3174912518 hasRelatedWork W4380075502 @default.
- W3174912518 hasRelatedWork W4380086463 @default.
- W3174912518 isParatext "false" @default.
- W3174912518 isRetracted "false" @default.
- W3174912518 magId "3174912518" @default.
- W3174912518 workType "book-chapter" @default.