Matches in SemOpenAlex for { <https://semopenalex.org/work/W3174920809> ?p ?o ?g. }
- W3174920809 endingPage "1509" @default.
- W3174920809 startingPage "1494" @default.
- W3174920809 abstract "Machine learning technology is commonly used for the prediction of the compressive strength of geopolymer composites. This research is focused on using algorithms ensembled by heterogeneous regression methods with stacking. Modelling is done with variables such as fly ash, fine aggregate, coarse aggregate, sodium hydroxide (NaOH), Sodium Silicate (Na2SiO3), molarity, added water, ground granulated blast furnace slag (GGBS), superplasticizer, curing time, and curing temperature. A total of 376 data points were collected from the standard literature. Various statistical metrics, such as mean absolute error (MAE), correlation coefficient (R), and root mean square error (RMSE), are used to measure model results. The algorithm developed shows 90% efficiency. This accuracy of data suggests that the proposed stacked combination algorithm would help the construction industry in the prediction of the amount of constituent required for an expected compressive strength of any of the above-listed input data, as now one can curb the unnecessary ingredients and promote only required ingredients as per the suggested method. A strong association was found between machine learning models and experimental findings." @default.
- W3174920809 created "2021-07-05" @default.
- W3174920809 creator A5011319114 @default.
- W3174920809 creator A5018168194 @default.
- W3174920809 creator A5036907376 @default.
- W3174920809 creator A5069681794 @default.
- W3174920809 date "2021-06-30" @default.
- W3174920809 modified "2023-09-25" @default.
- W3174920809 title "A novel hybrid soft computing model using stacking with ensemble method for estimation of compressive strength of geopolymer composite" @default.
- W3174920809 cites W1480376833 @default.
- W3174920809 cites W1549436606 @default.
- W3174920809 cites W1560167527 @default.
- W3174920809 cites W1964946787 @default.
- W3174920809 cites W2011580004 @default.
- W3174920809 cites W2018268432 @default.
- W3174920809 cites W2050802546 @default.
- W3174920809 cites W2056272607 @default.
- W3174920809 cites W2087661061 @default.
- W3174920809 cites W2093286138 @default.
- W3174920809 cites W2117475904 @default.
- W3174920809 cites W2138866302 @default.
- W3174920809 cites W2226868685 @default.
- W3174920809 cites W2296223440 @default.
- W3174920809 cites W2329974251 @default.
- W3174920809 cites W2344945034 @default.
- W3174920809 cites W2581734850 @default.
- W3174920809 cites W2582324226 @default.
- W3174920809 cites W2610219179 @default.
- W3174920809 cites W2620577456 @default.
- W3174920809 cites W2621073336 @default.
- W3174920809 cites W2758887415 @default.
- W3174920809 cites W2789629010 @default.
- W3174920809 cites W2790480906 @default.
- W3174920809 cites W2794691054 @default.
- W3174920809 cites W2795337745 @default.
- W3174920809 cites W2885677382 @default.
- W3174920809 cites W2888945543 @default.
- W3174920809 cites W2889337219 @default.
- W3174920809 cites W2891538344 @default.
- W3174920809 cites W2893769615 @default.
- W3174920809 cites W2895147187 @default.
- W3174920809 cites W2898595828 @default.
- W3174920809 cites W2923370583 @default.
- W3174920809 cites W2947180465 @default.
- W3174920809 cites W2947916931 @default.
- W3174920809 cites W2964938350 @default.
- W3174920809 cites W3009211770 @default.
- W3174920809 cites W3038033549 @default.
- W3174920809 cites W3045575733 @default.
- W3174920809 cites W3080408759 @default.
- W3174920809 cites W3087991416 @default.
- W3174920809 cites W3100344990 @default.
- W3174920809 cites W3154798168 @default.
- W3174920809 cites W591119197 @default.
- W3174920809 doi "https://doi.org/10.1080/2374068x.2021.1945271" @default.
- W3174920809 hasPublicationYear "2021" @default.
- W3174920809 type Work @default.
- W3174920809 sameAs 3174920809 @default.
- W3174920809 citedByCount "1" @default.
- W3174920809 countsByYear W31749208092022 @default.
- W3174920809 crossrefType "journal-article" @default.
- W3174920809 hasAuthorship W3174920809A5011319114 @default.
- W3174920809 hasAuthorship W3174920809A5018168194 @default.
- W3174920809 hasAuthorship W3174920809A5036907376 @default.
- W3174920809 hasAuthorship W3174920809A5069681794 @default.
- W3174920809 hasConcept C104779481 @default.
- W3174920809 hasConcept C105795698 @default.
- W3174920809 hasConcept C119857082 @default.
- W3174920809 hasConcept C128990827 @default.
- W3174920809 hasConcept C132976073 @default.
- W3174920809 hasConcept C139945424 @default.
- W3174920809 hasConcept C140073362 @default.
- W3174920809 hasConcept C159985019 @default.
- W3174920809 hasConcept C191187239 @default.
- W3174920809 hasConcept C192562407 @default.
- W3174920809 hasConcept C2779947509 @default.
- W3174920809 hasConcept C2780837464 @default.
- W3174920809 hasConcept C30407753 @default.
- W3174920809 hasConcept C33819350 @default.
- W3174920809 hasConcept C33923547 @default.
- W3174920809 hasConcept C41008148 @default.
- W3174920809 hasConcept C50644808 @default.
- W3174920809 hasConcept C87343466 @default.
- W3174920809 hasConceptScore W3174920809C104779481 @default.
- W3174920809 hasConceptScore W3174920809C105795698 @default.
- W3174920809 hasConceptScore W3174920809C119857082 @default.
- W3174920809 hasConceptScore W3174920809C128990827 @default.
- W3174920809 hasConceptScore W3174920809C132976073 @default.
- W3174920809 hasConceptScore W3174920809C139945424 @default.
- W3174920809 hasConceptScore W3174920809C140073362 @default.
- W3174920809 hasConceptScore W3174920809C159985019 @default.
- W3174920809 hasConceptScore W3174920809C191187239 @default.
- W3174920809 hasConceptScore W3174920809C192562407 @default.
- W3174920809 hasConceptScore W3174920809C2779947509 @default.
- W3174920809 hasConceptScore W3174920809C2780837464 @default.
- W3174920809 hasConceptScore W3174920809C30407753 @default.
- W3174920809 hasConceptScore W3174920809C33819350 @default.
- W3174920809 hasConceptScore W3174920809C33923547 @default.