Matches in SemOpenAlex for { <https://semopenalex.org/work/W3174967186> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W3174967186 endingPage "e5246" @default.
- W3174967186 startingPage "e5236" @default.
- W3174967186 abstract "To develop a machine learning tool to integrate clinical data for the prediction of non-benign thyroid cytology and histology.Papillary thyroid carcinoma is the most common endocrine malignancy. Since most nodules are benign, the challenge for the clinician is to identify those most likely to harbor malignancy while limiting exposure to surgical risks among those with benign nodules.Random forests (augmented to select features based on our clinical measure of interest), in conjunction with interpretable rule sets, were used on demographic, ultrasound, and biopsy data of thyroid nodules from children younger than 18 years at a tertiary pediatric hospital. Accuracy, false-positive rate (FPR), false-negative rate (FNR), and area under the receiver operator curve (AUROC) are reported.Our models predict nonbenign cytology and malignant histology better than historical outcomes. Specifically, we expect a 68.04% improvement in the FPR, 11.90% increase in accuracy, and 24.85% increase in AUROC for biopsy predictions in 67 patients (28 with benign and 39 with nonbenign histology). We expect a 23.22% decrease in FPR, 32.19% increase in accuracy, and 3.84% decrease in AUROC for surgery prediction in 53 patients (42 with benign and 11 with nonbenign histology). This improvement comes at the expense of the FNR, for which we expect 10.27% with malignancy would be discouraged from performing biopsy, and 11.67% from surgery. Given the small number of patients, these improvements are estimates and are not tested on an independent test set.This work presents a first attempt at developing an interpretable machine learning based clinical tool to aid clinicians. Future work will involve sourcing more data and developing probabilistic estimates for predictions." @default.
- W3174967186 created "2021-07-05" @default.
- W3174967186 creator A5019855816 @default.
- W3174967186 creator A5051856483 @default.
- W3174967186 creator A5060137495 @default.
- W3174967186 creator A5087983309 @default.
- W3174967186 date "2021-06-23" @default.
- W3174967186 modified "2023-10-09" @default.
- W3174967186 title "Predicting Malignancy in Pediatric Thyroid Nodules: Early Experience With Machine Learning for Clinical Decision Support" @default.
- W3174967186 cites W1505191356 @default.
- W3174967186 cites W1602610616 @default.
- W3174967186 cites W2048252958 @default.
- W3174967186 cites W2055658941 @default.
- W3174967186 cites W2058646847 @default.
- W3174967186 cites W2119176673 @default.
- W3174967186 cites W2314815360 @default.
- W3174967186 cites W2484476528 @default.
- W3174967186 cites W2586821431 @default.
- W3174967186 cites W2724964984 @default.
- W3174967186 cites W2764187168 @default.
- W3174967186 cites W2786204509 @default.
- W3174967186 cites W2792384412 @default.
- W3174967186 cites W2800835334 @default.
- W3174967186 cites W2897203055 @default.
- W3174967186 cites W2911964244 @default.
- W3174967186 cites W2928011770 @default.
- W3174967186 cites W2958771685 @default.
- W3174967186 cites W2963292722 @default.
- W3174967186 cites W3132473144 @default.
- W3174967186 cites W4236708717 @default.
- W3174967186 cites W62131091 @default.
- W3174967186 doi "https://doi.org/10.1210/clinem/dgab435" @default.
- W3174967186 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34160618" @default.
- W3174967186 hasPublicationYear "2021" @default.
- W3174967186 type Work @default.
- W3174967186 sameAs 3174967186 @default.
- W3174967186 citedByCount "5" @default.
- W3174967186 countsByYear W31749671862022 @default.
- W3174967186 countsByYear W31749671862023 @default.
- W3174967186 crossrefType "journal-article" @default.
- W3174967186 hasAuthorship W3174967186A5019855816 @default.
- W3174967186 hasAuthorship W3174967186A5051856483 @default.
- W3174967186 hasAuthorship W3174967186A5060137495 @default.
- W3174967186 hasAuthorship W3174967186A5087983309 @default.
- W3174967186 hasBestOaLocation W31749671861 @default.
- W3174967186 hasConcept C126322002 @default.
- W3174967186 hasConcept C126838900 @default.
- W3174967186 hasConcept C142724271 @default.
- W3174967186 hasConcept C18823058 @default.
- W3174967186 hasConcept C2775934546 @default.
- W3174967186 hasConcept C2779022025 @default.
- W3174967186 hasConcept C2779399171 @default.
- W3174967186 hasConcept C2993294228 @default.
- W3174967186 hasConcept C526584372 @default.
- W3174967186 hasConcept C58471807 @default.
- W3174967186 hasConcept C71924100 @default.
- W3174967186 hasConceptScore W3174967186C126322002 @default.
- W3174967186 hasConceptScore W3174967186C126838900 @default.
- W3174967186 hasConceptScore W3174967186C142724271 @default.
- W3174967186 hasConceptScore W3174967186C18823058 @default.
- W3174967186 hasConceptScore W3174967186C2775934546 @default.
- W3174967186 hasConceptScore W3174967186C2779022025 @default.
- W3174967186 hasConceptScore W3174967186C2779399171 @default.
- W3174967186 hasConceptScore W3174967186C2993294228 @default.
- W3174967186 hasConceptScore W3174967186C526584372 @default.
- W3174967186 hasConceptScore W3174967186C58471807 @default.
- W3174967186 hasConceptScore W3174967186C71924100 @default.
- W3174967186 hasFunder F4320309949 @default.
- W3174967186 hasFunder F4320310787 @default.
- W3174967186 hasFunder F4320334506 @default.
- W3174967186 hasFunder F4320334593 @default.
- W3174967186 hasFunder F4320336555 @default.
- W3174967186 hasIssue "12" @default.
- W3174967186 hasLocation W31749671861 @default.
- W3174967186 hasLocation W31749671862 @default.
- W3174967186 hasLocation W31749671863 @default.
- W3174967186 hasLocation W31749671864 @default.
- W3174967186 hasLocation W31749671865 @default.
- W3174967186 hasOpenAccess W3174967186 @default.
- W3174967186 hasPrimaryLocation W31749671861 @default.
- W3174967186 hasRelatedWork W1511885230 @default.
- W3174967186 hasRelatedWork W2075912224 @default.
- W3174967186 hasRelatedWork W2076810258 @default.
- W3174967186 hasRelatedWork W2087132831 @default.
- W3174967186 hasRelatedWork W2101143871 @default.
- W3174967186 hasRelatedWork W2399089530 @default.
- W3174967186 hasRelatedWork W2406151400 @default.
- W3174967186 hasRelatedWork W2419052398 @default.
- W3174967186 hasRelatedWork W2427694309 @default.
- W3174967186 hasRelatedWork W2809476240 @default.
- W3174967186 hasVolume "106" @default.
- W3174967186 isParatext "false" @default.
- W3174967186 isRetracted "false" @default.
- W3174967186 magId "3174967186" @default.
- W3174967186 workType "article" @default.