Matches in SemOpenAlex for { <https://semopenalex.org/work/W3174972063> ?p ?o ?g. }
- W3174972063 endingPage "1646" @default.
- W3174972063 startingPage "1637" @default.
- W3174972063 abstract "Discrimination of nasal cavity mass lesions is a challenging work requiring extensive experience. A deep learning-based automated diagnostic system may help clinicians to classify nasal cavity mass lesions. We demonstrated the feasibility of a convolutional neural network (CNN)-based diagnosis system for automatic detection and classification of nasal polyps (NP) and inverted papillomas (IP).We developed a CNN-based algorithm using a transfer learning strategy and trained it on nasal endoscopic images. A total of 99 nasal endoscopic images with normal findings, 98 images with NP, and 100 images with IP were analyzed using the developed CNN. Six otolaryngologists participated in clinical visual assessment. Image-based classification performance was measured by calculating the accuracy and area under the receiver operating characteristic curve (AUC). The diagnostic performance was compared between the CNN and clinical visual assessment by human experts.The algorithm achieved an overall accuracy of 0.742 ± 0.058 with the following class accuracies: normal, 0.81± 0.14; IP, 0.57 ± 0.07; and NP, 0.83 ± 0.21. The AUC values for normal, IP, and NP were 0.91 ± 0.06, 0.82 ± 0.09, and 0.84 ± 0.06, respectively. The overall accuracy of the CNN model was comparable with the average performance of human experts (0.742 vs. 0.749; p = 0.11).The trained CNN model appears to reliably classify NP and IP of the nasal cavity from nasal endoscopic images; it also yields a reliable reference for diagnosing nasal cavity mass lesions during nasal endoscopy. However, further studies with more test data are warranted to improve the diagnostic accuracy of our CNN model." @default.
- W3174972063 created "2021-07-05" @default.
- W3174972063 creator A5024280699 @default.
- W3174972063 creator A5026396384 @default.
- W3174972063 creator A5066209217 @default.
- W3174972063 creator A5068512371 @default.
- W3174972063 creator A5076258905 @default.
- W3174972063 creator A5084395264 @default.
- W3174972063 date "2021-06-20" @default.
- W3174972063 modified "2023-10-17" @default.
- W3174972063 title "Feasibility of a deep learning‐based algorithm for automated detection and classification of nasal polyps and inverted papillomas on nasal endoscopic images" @default.
- W3174972063 cites W1913928155 @default.
- W3174972063 cites W2044029912 @default.
- W3174972063 cites W2052003885 @default.
- W3174972063 cites W2108598243 @default.
- W3174972063 cites W2129175874 @default.
- W3174972063 cites W2157134803 @default.
- W3174972063 cites W2165698076 @default.
- W3174972063 cites W2170165234 @default.
- W3174972063 cites W2185828908 @default.
- W3174972063 cites W2194775991 @default.
- W3174972063 cites W2326319228 @default.
- W3174972063 cites W2533800772 @default.
- W3174972063 cites W2549675233 @default.
- W3174972063 cites W2592929672 @default.
- W3174972063 cites W2769497098 @default.
- W3174972063 cites W2790544511 @default.
- W3174972063 cites W2794284562 @default.
- W3174972063 cites W2809596283 @default.
- W3174972063 cites W2884985635 @default.
- W3174972063 cites W2927259948 @default.
- W3174972063 cites W2934760417 @default.
- W3174972063 cites W2935090763 @default.
- W3174972063 cites W2962048246 @default.
- W3174972063 cites W2962858109 @default.
- W3174972063 cites W2978479212 @default.
- W3174972063 cites W2978981352 @default.
- W3174972063 cites W2995515675 @default.
- W3174972063 cites W2998669042 @default.
- W3174972063 cites W3006805607 @default.
- W3174972063 cites W3014905804 @default.
- W3174972063 cites W3041133507 @default.
- W3174972063 cites W3105282616 @default.
- W3174972063 doi "https://doi.org/10.1002/alr.22854" @default.
- W3174972063 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34148298" @default.
- W3174972063 hasPublicationYear "2021" @default.
- W3174972063 type Work @default.
- W3174972063 sameAs 3174972063 @default.
- W3174972063 citedByCount "10" @default.
- W3174972063 countsByYear W31749720632022 @default.
- W3174972063 countsByYear W31749720632023 @default.
- W3174972063 crossrefType "journal-article" @default.
- W3174972063 hasAuthorship W3174972063A5024280699 @default.
- W3174972063 hasAuthorship W3174972063A5026396384 @default.
- W3174972063 hasAuthorship W3174972063A5066209217 @default.
- W3174972063 hasAuthorship W3174972063A5068512371 @default.
- W3174972063 hasAuthorship W3174972063A5076258905 @default.
- W3174972063 hasAuthorship W3174972063A5084395264 @default.
- W3174972063 hasConcept C11413529 @default.
- W3174972063 hasConcept C126838900 @default.
- W3174972063 hasConcept C141071460 @default.
- W3174972063 hasConcept C142724271 @default.
- W3174972063 hasConcept C154945302 @default.
- W3174972063 hasConcept C2778801703 @default.
- W3174972063 hasConcept C2781390199 @default.
- W3174972063 hasConcept C3020132585 @default.
- W3174972063 hasConcept C41008148 @default.
- W3174972063 hasConcept C71924100 @default.
- W3174972063 hasConcept C81363708 @default.
- W3174972063 hasConceptScore W3174972063C11413529 @default.
- W3174972063 hasConceptScore W3174972063C126838900 @default.
- W3174972063 hasConceptScore W3174972063C141071460 @default.
- W3174972063 hasConceptScore W3174972063C142724271 @default.
- W3174972063 hasConceptScore W3174972063C154945302 @default.
- W3174972063 hasConceptScore W3174972063C2778801703 @default.
- W3174972063 hasConceptScore W3174972063C2781390199 @default.
- W3174972063 hasConceptScore W3174972063C3020132585 @default.
- W3174972063 hasConceptScore W3174972063C41008148 @default.
- W3174972063 hasConceptScore W3174972063C71924100 @default.
- W3174972063 hasConceptScore W3174972063C81363708 @default.
- W3174972063 hasIssue "12" @default.
- W3174972063 hasLocation W31749720631 @default.
- W3174972063 hasLocation W31749720632 @default.
- W3174972063 hasOpenAccess W3174972063 @default.
- W3174972063 hasPrimaryLocation W31749720631 @default.
- W3174972063 hasRelatedWork W2368322615 @default.
- W3174972063 hasRelatedWork W2378576706 @default.
- W3174972063 hasRelatedWork W2800773914 @default.
- W3174972063 hasRelatedWork W3013351791 @default.
- W3174972063 hasRelatedWork W3024577895 @default.
- W3174972063 hasRelatedWork W3126705205 @default.
- W3174972063 hasRelatedWork W4252097361 @default.
- W3174972063 hasRelatedWork W4293226380 @default.
- W3174972063 hasRelatedWork W4313368416 @default.
- W3174972063 hasRelatedWork W4313368814 @default.
- W3174972063 hasVolume "11" @default.
- W3174972063 isParatext "false" @default.
- W3174972063 isRetracted "false" @default.