Matches in SemOpenAlex for { <https://semopenalex.org/work/W3174990168> ?p ?o ?g. }
- W3174990168 endingPage "6006" @default.
- W3174990168 startingPage "6000" @default.
- W3174990168 abstract "Machine-learning (ML) techniques have drawn an ever-increasing focus as they enable high-throughput screening and multiscale prediction of material properties. Especially, ML force fields (FFs) of quantum mechanical accuracy are expected to play a central role for the purpose. The construction of ML-FFs for polymers is, however, still in its infancy due to the formidable configurational space of its composing atoms. Here, we demonstrate the effective development of ML-FFs using kernel functions and a Gaussian process for an organic polymer, polytetrafluoroethylene (PTFE), with a data set acquired by first-principles calculations and ab initio molecular dynamics (AIMD) simulations. Even though the training data set is sampled only with short PTFE chains, structures of longer chains optimized by our ML-FF show an excellent consistency with density functional theory calculations. Furthermore, when integrated with molecular dynamics simulations, the ML-FF successfully describes various physical properties of a PTFE bundle, such as a density, melting temperature, coefficient of thermal expansion, and Young’s modulus." @default.
- W3174990168 created "2021-07-05" @default.
- W3174990168 creator A5005616415 @default.
- W3174990168 creator A5019907897 @default.
- W3174990168 creator A5034081562 @default.
- W3174990168 creator A5036749276 @default.
- W3174990168 creator A5071785436 @default.
- W3174990168 creator A5087537676 @default.
- W3174990168 creator A5090037720 @default.
- W3174990168 date "2021-06-24" @default.
- W3174990168 modified "2023-10-17" @default.
- W3174990168 title "First-Principles-Based Machine-Learning Molecular Dynamics for Crystalline Polymers with van der Waals Interactions" @default.
- W3174990168 cites W1131018472 @default.
- W3174990168 cites W1970127494 @default.
- W3174990168 cites W1975997599 @default.
- W3174990168 cites W1977277458 @default.
- W3174990168 cites W1981368803 @default.
- W3174990168 cites W1991794210 @default.
- W3174990168 cites W1995944250 @default.
- W3174990168 cites W2017196167 @default.
- W3174990168 cites W2017920575 @default.
- W3174990168 cites W2019465613 @default.
- W3174990168 cites W2029147600 @default.
- W3174990168 cites W2029413789 @default.
- W3174990168 cites W2044591029 @default.
- W3174990168 cites W2080131977 @default.
- W3174990168 cites W2082912027 @default.
- W3174990168 cites W2083222334 @default.
- W3174990168 cites W2083415705 @default.
- W3174990168 cites W2084053963 @default.
- W3174990168 cites W2085822586 @default.
- W3174990168 cites W2091654157 @default.
- W3174990168 cites W2121206966 @default.
- W3174990168 cites W2129082801 @default.
- W3174990168 cites W2155155530 @default.
- W3174990168 cites W2161025573 @default.
- W3174990168 cites W2325019447 @default.
- W3174990168 cites W2410722695 @default.
- W3174990168 cites W2473497409 @default.
- W3174990168 cites W2503343131 @default.
- W3174990168 cites W2547447472 @default.
- W3174990168 cites W2782772320 @default.
- W3174990168 cites W2883241164 @default.
- W3174990168 cites W2884430236 @default.
- W3174990168 cites W2885033829 @default.
- W3174990168 cites W2902849665 @default.
- W3174990168 cites W2905707612 @default.
- W3174990168 cites W2950683186 @default.
- W3174990168 cites W2972418846 @default.
- W3174990168 cites W3004987440 @default.
- W3174990168 cites W3012230641 @default.
- W3174990168 cites W3023200531 @default.
- W3174990168 cites W3024136812 @default.
- W3174990168 cites W3042992771 @default.
- W3174990168 cites W3049457262 @default.
- W3174990168 cites W3118941486 @default.
- W3174990168 cites W90217597 @default.
- W3174990168 doi "https://doi.org/10.1021/acs.jpclett.1c01140" @default.
- W3174990168 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34165310" @default.
- W3174990168 hasPublicationYear "2021" @default.
- W3174990168 type Work @default.
- W3174990168 sameAs 3174990168 @default.
- W3174990168 citedByCount "9" @default.
- W3174990168 countsByYear W31749901682021 @default.
- W3174990168 countsByYear W31749901682022 @default.
- W3174990168 countsByYear W31749901682023 @default.
- W3174990168 crossrefType "journal-article" @default.
- W3174990168 hasAuthorship W3174990168A5005616415 @default.
- W3174990168 hasAuthorship W3174990168A5019907897 @default.
- W3174990168 hasAuthorship W3174990168A5034081562 @default.
- W3174990168 hasAuthorship W3174990168A5036749276 @default.
- W3174990168 hasAuthorship W3174990168A5071785436 @default.
- W3174990168 hasAuthorship W3174990168A5087537676 @default.
- W3174990168 hasAuthorship W3174990168A5090037720 @default.
- W3174990168 hasConcept C121332964 @default.
- W3174990168 hasConcept C121864883 @default.
- W3174990168 hasConcept C126061179 @default.
- W3174990168 hasConcept C147597530 @default.
- W3174990168 hasConcept C152365726 @default.
- W3174990168 hasConcept C154945302 @default.
- W3174990168 hasConcept C159467904 @default.
- W3174990168 hasConcept C159985019 @default.
- W3174990168 hasConcept C185592680 @default.
- W3174990168 hasConcept C192562407 @default.
- W3174990168 hasConcept C2776436953 @default.
- W3174990168 hasConcept C32909587 @default.
- W3174990168 hasConcept C41008148 @default.
- W3174990168 hasConcept C521977710 @default.
- W3174990168 hasConcept C59593255 @default.
- W3174990168 hasConcept C62520636 @default.
- W3174990168 hasConceptScore W3174990168C121332964 @default.
- W3174990168 hasConceptScore W3174990168C121864883 @default.
- W3174990168 hasConceptScore W3174990168C126061179 @default.
- W3174990168 hasConceptScore W3174990168C147597530 @default.
- W3174990168 hasConceptScore W3174990168C152365726 @default.
- W3174990168 hasConceptScore W3174990168C154945302 @default.
- W3174990168 hasConceptScore W3174990168C159467904 @default.
- W3174990168 hasConceptScore W3174990168C159985019 @default.