Matches in SemOpenAlex for { <https://semopenalex.org/work/W3174997142> ?p ?o ?g. }
- W3174997142 endingPage "1530" @default.
- W3174997142 startingPage "1517" @default.
- W3174997142 abstract "Mobile-edge computing (MEC) has emerged as a promising computing paradigm in the 5G architecture, which can empower user equipments (UEs) with computation and energy resources offered by migrating workloads from UEs to the nearby MEC servers. Although the issues of computation offloading and resource allocation in MEC have been studied with different optimization objectives, they mainly focus on facilitating the performance in the quasistatic system, and seldomly consider time-varying system conditions in the time domain. In this article, we investigate the joint optimization of computation offloading and resource allocation in a dynamic multiuser MEC system. Our objective is to minimize the energy consumption of the entire MEC system, by considering the delay constraint as well as the uncertain resource requirements of heterogeneous computation tasks. We formulate the problem as a mixed-integer nonlinear programming (MINLP) problem, and propose a value iteration-based reinforcement learning (RL) method, named <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$Q$ </tex-math></inline-formula> -Learning, to determine the joint policy of computation offloading and resource allocation. To avoid the curse of dimensionality, we further propose a double deep <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$Q$ </tex-math></inline-formula> network (DDQN)-based method, which can efficiently approximate the value function of <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$Q$ </tex-math></inline-formula> -learning. The simulation results demonstrate that the proposed methods significantly outperform other baseline methods in different scenarios, except the exhaustion method. Especially, the proposed DDQN-based method achieves very close performance with the exhaustion method, and can significantly reduce the average of 20%, 35%, and 53% energy consumption compared with offloading decision, local first method, and offloading first method, respectively, when the number of UEs is 5." @default.
- W3174997142 created "2021-07-05" @default.
- W3174997142 creator A5010999540 @default.
- W3174997142 creator A5035919267 @default.
- W3174997142 creator A5049807322 @default.
- W3174997142 creator A5059492103 @default.
- W3174997142 creator A5072491273 @default.
- W3174997142 date "2022-01-15" @default.
- W3174997142 modified "2023-09-29" @default.
- W3174997142 title "Deep Reinforcement Learning for Energy-Efficient Computation Offloading in Mobile-Edge Computing" @default.
- W3174997142 cites W2195423816 @default.
- W3174997142 cites W2343050074 @default.
- W3174997142 cites W2400861403 @default.
- W3174997142 cites W2511425482 @default.
- W3174997142 cites W2603810864 @default.
- W3174997142 cites W2620831508 @default.
- W3174997142 cites W2751904527 @default.
- W3174997142 cites W2761545465 @default.
- W3174997142 cites W2761862361 @default.
- W3174997142 cites W2778138942 @default.
- W3174997142 cites W2786027963 @default.
- W3174997142 cites W2791432311 @default.
- W3174997142 cites W2803421549 @default.
- W3174997142 cites W2808381205 @default.
- W3174997142 cites W2886033427 @default.
- W3174997142 cites W2889540440 @default.
- W3174997142 cites W2891123429 @default.
- W3174997142 cites W2898035736 @default.
- W3174997142 cites W2909267459 @default.
- W3174997142 cites W2914434280 @default.
- W3174997142 cites W2916889275 @default.
- W3174997142 cites W2938135176 @default.
- W3174997142 cites W2950865323 @default.
- W3174997142 cites W2959077418 @default.
- W3174997142 cites W2964050982 @default.
- W3174997142 cites W2967578255 @default.
- W3174997142 cites W2967734072 @default.
- W3174997142 cites W2968424451 @default.
- W3174997142 cites W2971544482 @default.
- W3174997142 cites W2974654731 @default.
- W3174997142 cites W2994452598 @default.
- W3174997142 cites W2998623446 @default.
- W3174997142 cites W3002258616 @default.
- W3174997142 cites W3009864640 @default.
- W3174997142 cites W3010723141 @default.
- W3174997142 cites W3012316639 @default.
- W3174997142 cites W3024681024 @default.
- W3174997142 cites W3034730089 @default.
- W3174997142 cites W3047488480 @default.
- W3174997142 cites W3080609575 @default.
- W3174997142 cites W3105504538 @default.
- W3174997142 cites W3124943657 @default.
- W3174997142 doi "https://doi.org/10.1109/jiot.2021.3091142" @default.
- W3174997142 hasPublicationYear "2022" @default.
- W3174997142 type Work @default.
- W3174997142 sameAs 3174997142 @default.
- W3174997142 citedByCount "66" @default.
- W3174997142 countsByYear W31749971422021 @default.
- W3174997142 countsByYear W31749971422022 @default.
- W3174997142 countsByYear W31749971422023 @default.
- W3174997142 crossrefType "journal-article" @default.
- W3174997142 hasAuthorship W3174997142A5010999540 @default.
- W3174997142 hasAuthorship W3174997142A5035919267 @default.
- W3174997142 hasAuthorship W3174997142A5049807322 @default.
- W3174997142 hasAuthorship W3174997142A5059492103 @default.
- W3174997142 hasAuthorship W3174997142A5072491273 @default.
- W3174997142 hasConcept C11413529 @default.
- W3174997142 hasConcept C126255220 @default.
- W3174997142 hasConcept C137836250 @default.
- W3174997142 hasConcept C154945302 @default.
- W3174997142 hasConcept C162307627 @default.
- W3174997142 hasConcept C2776061582 @default.
- W3174997142 hasConcept C2778456923 @default.
- W3174997142 hasConcept C2781041963 @default.
- W3174997142 hasConcept C29202148 @default.
- W3174997142 hasConcept C31258907 @default.
- W3174997142 hasConcept C33923547 @default.
- W3174997142 hasConcept C41008148 @default.
- W3174997142 hasConcept C45374587 @default.
- W3174997142 hasConcept C80444323 @default.
- W3174997142 hasConcept C93996380 @default.
- W3174997142 hasConcept C97541855 @default.
- W3174997142 hasConceptScore W3174997142C11413529 @default.
- W3174997142 hasConceptScore W3174997142C126255220 @default.
- W3174997142 hasConceptScore W3174997142C137836250 @default.
- W3174997142 hasConceptScore W3174997142C154945302 @default.
- W3174997142 hasConceptScore W3174997142C162307627 @default.
- W3174997142 hasConceptScore W3174997142C2776061582 @default.
- W3174997142 hasConceptScore W3174997142C2778456923 @default.
- W3174997142 hasConceptScore W3174997142C2781041963 @default.
- W3174997142 hasConceptScore W3174997142C29202148 @default.
- W3174997142 hasConceptScore W3174997142C31258907 @default.
- W3174997142 hasConceptScore W3174997142C33923547 @default.
- W3174997142 hasConceptScore W3174997142C41008148 @default.
- W3174997142 hasConceptScore W3174997142C45374587 @default.
- W3174997142 hasConceptScore W3174997142C80444323 @default.
- W3174997142 hasConceptScore W3174997142C93996380 @default.
- W3174997142 hasConceptScore W3174997142C97541855 @default.