Matches in SemOpenAlex for { <https://semopenalex.org/work/W3175032397> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W3175032397 endingPage "104345" @default.
- W3175032397 startingPage "104345" @default.
- W3175032397 abstract "A diagnosis based on Bayesian theory requires knowledge of the a priori and conditional probabilities of the states of the system being diagnosed. The a priori probabilities are frequently provided nowadays by the manufacturers of these systems. In turn, the probabilities of conditional observations are, as a rule, not available. The question arises as to whether and under what conditions it is possible to substitute conditional probabilities with some aggregate obtainable on the grounds of fuzzy logic. This article responds to this question by proposing a hybrid approach with novelty characteristics in both theoretical and practical terms. In the initial phase of the deliberations, it was concluded that the fundamental difference between Bayesian and fuzzy approaches is that the fuzzy approach considers the uncertainty and lack of precision of observations but overlooks the frequency of observations, and the opposite is true of the Bayesian approach. It therefore seems reasonable to seek the hybridization of both methods so that the Bayesian approach carrying the information regarding the subjective probabilities of faults can be applied in practice. To this end, it has been shown that the probability of a conditional observation can be estimated by calculating the degree of truth of the premise for that observation in the state-specific fuzzy rule. The reminder is devoted to presenting numerical and simulation examples illustrating and verifying the proposed approach. • Fuzzy and Bayes approaches to diagnosing exhibit weaknesses. • A fusion of the Bayesian and fuzzy inference gets better diagnosability. • A proposition of a new hybrid method of diagnostic inference." @default.
- W3175032397 created "2021-07-05" @default.
- W3175032397 creator A5000883886 @default.
- W3175032397 creator A5078055724 @default.
- W3175032397 creator A5081920501 @default.
- W3175032397 date "2021-09-01" @default.
- W3175032397 modified "2023-09-23" @default.
- W3175032397 title "Diagnosing with a hybrid fuzzy–Bayesian inference approach" @default.
- W3175032397 cites W1950997662 @default.
- W3175032397 cites W1970461315 @default.
- W3175032397 cites W1972649913 @default.
- W3175032397 cites W1980452149 @default.
- W3175032397 cites W1981218190 @default.
- W3175032397 cites W2023221196 @default.
- W3175032397 cites W2049809778 @default.
- W3175032397 cites W2102713981 @default.
- W3175032397 cites W2108309071 @default.
- W3175032397 cites W2116148009 @default.
- W3175032397 cites W2137659272 @default.
- W3175032397 cites W2138377092 @default.
- W3175032397 cites W2143636474 @default.
- W3175032397 cites W2165538520 @default.
- W3175032397 cites W2306206300 @default.
- W3175032397 cites W2406470551 @default.
- W3175032397 cites W2576708357 @default.
- W3175032397 cites W2770846092 @default.
- W3175032397 cites W2898686044 @default.
- W3175032397 cites W2909717956 @default.
- W3175032397 cites W2995855315 @default.
- W3175032397 cites W3164988943 @default.
- W3175032397 cites W4211007335 @default.
- W3175032397 cites W4235603051 @default.
- W3175032397 doi "https://doi.org/10.1016/j.engappai.2021.104345" @default.
- W3175032397 hasPublicationYear "2021" @default.
- W3175032397 type Work @default.
- W3175032397 sameAs 3175032397 @default.
- W3175032397 citedByCount "6" @default.
- W3175032397 countsByYear W31750323972022 @default.
- W3175032397 countsByYear W31750323972023 @default.
- W3175032397 crossrefType "journal-article" @default.
- W3175032397 hasAuthorship W3175032397A5000883886 @default.
- W3175032397 hasAuthorship W3175032397A5078055724 @default.
- W3175032397 hasAuthorship W3175032397A5081920501 @default.
- W3175032397 hasConcept C105795698 @default.
- W3175032397 hasConcept C107673813 @default.
- W3175032397 hasConcept C111472728 @default.
- W3175032397 hasConcept C119857082 @default.
- W3175032397 hasConcept C124101348 @default.
- W3175032397 hasConcept C138885662 @default.
- W3175032397 hasConcept C154945302 @default.
- W3175032397 hasConcept C160234255 @default.
- W3175032397 hasConcept C33923547 @default.
- W3175032397 hasConcept C41008148 @default.
- W3175032397 hasConcept C44492722 @default.
- W3175032397 hasConcept C58166 @default.
- W3175032397 hasConcept C75553542 @default.
- W3175032397 hasConceptScore W3175032397C105795698 @default.
- W3175032397 hasConceptScore W3175032397C107673813 @default.
- W3175032397 hasConceptScore W3175032397C111472728 @default.
- W3175032397 hasConceptScore W3175032397C119857082 @default.
- W3175032397 hasConceptScore W3175032397C124101348 @default.
- W3175032397 hasConceptScore W3175032397C138885662 @default.
- W3175032397 hasConceptScore W3175032397C154945302 @default.
- W3175032397 hasConceptScore W3175032397C160234255 @default.
- W3175032397 hasConceptScore W3175032397C33923547 @default.
- W3175032397 hasConceptScore W3175032397C41008148 @default.
- W3175032397 hasConceptScore W3175032397C44492722 @default.
- W3175032397 hasConceptScore W3175032397C58166 @default.
- W3175032397 hasConceptScore W3175032397C75553542 @default.
- W3175032397 hasFunder F4320322637 @default.
- W3175032397 hasLocation W31750323971 @default.
- W3175032397 hasOpenAccess W3175032397 @default.
- W3175032397 hasPrimaryLocation W31750323971 @default.
- W3175032397 hasRelatedWork W2013020680 @default.
- W3175032397 hasRelatedWork W2028135929 @default.
- W3175032397 hasRelatedWork W2110658950 @default.
- W3175032397 hasRelatedWork W2511279186 @default.
- W3175032397 hasRelatedWork W2963058055 @default.
- W3175032397 hasRelatedWork W3033035387 @default.
- W3175032397 hasRelatedWork W3123135592 @default.
- W3175032397 hasRelatedWork W3161263131 @default.
- W3175032397 hasRelatedWork W4200634454 @default.
- W3175032397 hasRelatedWork W96862169 @default.
- W3175032397 hasVolume "104" @default.
- W3175032397 isParatext "false" @default.
- W3175032397 isRetracted "false" @default.
- W3175032397 magId "3175032397" @default.
- W3175032397 workType "article" @default.