Matches in SemOpenAlex for { <https://semopenalex.org/work/W3175064897> ?p ?o ?g. }
- W3175064897 endingPage "103788" @default.
- W3175064897 startingPage "103788" @default.
- W3175064897 abstract "Automated pavement distress detection based on 2D images is facing various challenges. To efficiently complete the crack and pothole segmentation in a practical environment, an automated pixel-level pavement distress detection framework integrating stereo vision and deep learning is developed in this study. Based on the multi-view stereo imaging system, multi-feature pavement image datasets containing color images, depth images and color-depth overlapped images are established, providing a new perspective for deep learning. To alleviate computational burden, a modified U-net deep learning architecture introducing depthwise separable convolution is proposed for crack and pothole segmentation. These methods are tested in asphalt roads with different circumstances. The results show that the 3D pavement image achieves millimeter-level accuracy. The enhanced 3D crack segmentation model outperforms other models in terms of segmentation accuracy and inference speed. After obtaining the high-resolution pothole segmentation map, the automated pothole volume measurement is realized with high accuracy. • Stereo vision and deep learning were integrated for automated pavement crack and pothole segmentation. • Multi-feature image datasets containing 2D, 3D and enhanced-3D images were established by stereo vision. • A modified U-net embedding depthwise separable convolution was proposed for faster segmentation. • The deep learning efficiency using different types of images was investigated. • Automated pothole volume measurement was achieved based on 3D image segmentation." @default.
- W3175064897 created "2021-07-05" @default.
- W3175064897 creator A5023161659 @default.
- W3175064897 creator A5027288861 @default.
- W3175064897 creator A5030431816 @default.
- W3175064897 creator A5037066469 @default.
- W3175064897 creator A5045979794 @default.
- W3175064897 creator A5049941670 @default.
- W3175064897 date "2021-09-01" @default.
- W3175064897 modified "2023-10-16" @default.
- W3175064897 title "Automated pixel-level pavement distress detection based on stereo vision and deep learning" @default.
- W3175064897 cites W1644863801 @default.
- W3175064897 cites W1780449140 @default.
- W3175064897 cites W2021326662 @default.
- W3175064897 cites W2037325199 @default.
- W3175064897 cites W2151103935 @default.
- W3175064897 cites W2565354498 @default.
- W3175064897 cites W2603720244 @default.
- W3175064897 cites W2737578029 @default.
- W3175064897 cites W2748643398 @default.
- W3175064897 cites W2748746495 @default.
- W3175064897 cites W2776541877 @default.
- W3175064897 cites W2814406141 @default.
- W3175064897 cites W2886369963 @default.
- W3175064897 cites W2896216839 @default.
- W3175064897 cites W2905053868 @default.
- W3175064897 cites W2912530595 @default.
- W3175064897 cites W2913160846 @default.
- W3175064897 cites W2920633487 @default.
- W3175064897 cites W2964308596 @default.
- W3175064897 cites W2965435055 @default.
- W3175064897 cites W2966109159 @default.
- W3175064897 cites W2971142007 @default.
- W3175064897 cites W2972093541 @default.
- W3175064897 cites W2998856784 @default.
- W3175064897 cites W3006380048 @default.
- W3175064897 cites W3011200270 @default.
- W3175064897 cites W3036991312 @default.
- W3175064897 cites W3040786507 @default.
- W3175064897 cites W3043481597 @default.
- W3175064897 cites W3087277009 @default.
- W3175064897 doi "https://doi.org/10.1016/j.autcon.2021.103788" @default.
- W3175064897 hasPublicationYear "2021" @default.
- W3175064897 type Work @default.
- W3175064897 sameAs 3175064897 @default.
- W3175064897 citedByCount "61" @default.
- W3175064897 countsByYear W31750648972021 @default.
- W3175064897 countsByYear W31750648972022 @default.
- W3175064897 countsByYear W31750648972023 @default.
- W3175064897 crossrefType "journal-article" @default.
- W3175064897 hasAuthorship W3175064897A5023161659 @default.
- W3175064897 hasAuthorship W3175064897A5027288861 @default.
- W3175064897 hasAuthorship W3175064897A5030431816 @default.
- W3175064897 hasAuthorship W3175064897A5037066469 @default.
- W3175064897 hasAuthorship W3175064897A5045979794 @default.
- W3175064897 hasAuthorship W3175064897A5049941670 @default.
- W3175064897 hasConcept C108583219 @default.
- W3175064897 hasConcept C124504099 @default.
- W3175064897 hasConcept C127313418 @default.
- W3175064897 hasConcept C138885662 @default.
- W3175064897 hasConcept C154945302 @default.
- W3175064897 hasConcept C2776023743 @default.
- W3175064897 hasConcept C2776401178 @default.
- W3175064897 hasConcept C31972630 @default.
- W3175064897 hasConcept C41008148 @default.
- W3175064897 hasConcept C41895202 @default.
- W3175064897 hasConcept C5900021 @default.
- W3175064897 hasConcept C68537008 @default.
- W3175064897 hasConcept C89600930 @default.
- W3175064897 hasConceptScore W3175064897C108583219 @default.
- W3175064897 hasConceptScore W3175064897C124504099 @default.
- W3175064897 hasConceptScore W3175064897C127313418 @default.
- W3175064897 hasConceptScore W3175064897C138885662 @default.
- W3175064897 hasConceptScore W3175064897C154945302 @default.
- W3175064897 hasConceptScore W3175064897C2776023743 @default.
- W3175064897 hasConceptScore W3175064897C2776401178 @default.
- W3175064897 hasConceptScore W3175064897C31972630 @default.
- W3175064897 hasConceptScore W3175064897C41008148 @default.
- W3175064897 hasConceptScore W3175064897C41895202 @default.
- W3175064897 hasConceptScore W3175064897C5900021 @default.
- W3175064897 hasConceptScore W3175064897C68537008 @default.
- W3175064897 hasConceptScore W3175064897C89600930 @default.
- W3175064897 hasLocation W31750648971 @default.
- W3175064897 hasOpenAccess W3175064897 @default.
- W3175064897 hasPrimaryLocation W31750648971 @default.
- W3175064897 hasRelatedWork W15605007 @default.
- W3175064897 hasRelatedWork W1669643531 @default.
- W3175064897 hasRelatedWork W2102575890 @default.
- W3175064897 hasRelatedWork W2110230079 @default.
- W3175064897 hasRelatedWork W2117664411 @default.
- W3175064897 hasRelatedWork W2117933325 @default.
- W3175064897 hasRelatedWork W2122581818 @default.
- W3175064897 hasRelatedWork W2159066190 @default.
- W3175064897 hasRelatedWork W2739874619 @default.
- W3175064897 hasRelatedWork W2948658236 @default.
- W3175064897 hasVolume "129" @default.
- W3175064897 isParatext "false" @default.
- W3175064897 isRetracted "false" @default.