Matches in SemOpenAlex for { <https://semopenalex.org/work/W3175082072> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W3175082072 endingPage "245" @default.
- W3175082072 startingPage "232" @default.
- W3175082072 abstract "Artificial intelligence is becoming a larger part of operations for many industries. One industry where this is occurring rapidly is the nuclear industry. Researchers from around the world are looking to implement this technology in various areas of the nuclear industry. This paper explores the use of machine learning to diagnose problems. This project makes use of synthetic data collected from a Generic Pressurized Water Reactor (GPWR) simulator on whether a reactor is operating normally or experiencing one of four different transient events. A dataset was created consisting of over 30 000 reactor operational states. The data were explored and wrangled using Python and the Pandas package, using a variety of methods. Once ready, the data were randomly shuffled, with half the data being used for training and the other half being used for testing. Six different machine learning models were created using scikit-learn and the AutoML package Tree-based Pipeline Optimization Tool (TPOT). These models were created using six data scaling methods along with six feature reduction/selection methods. These models were validated using accuracy, precision, recall, and F1 score. The accuracy of the individual transients was also calculated. All six of the models had validation scores above 95%, with the decision tree and logistic regression models performing the best. These results are promising for the possible future use of machine learning in reactor diagnostics." @default.
- W3175082072 created "2021-07-05" @default.
- W3175082072 creator A5015830195 @default.
- W3175082072 creator A5084318561 @default.
- W3175082072 creator A5087443925 @default.
- W3175082072 date "2021-06-16" @default.
- W3175082072 modified "2023-09-27" @default.
- W3175082072 title "Nuclear Reactor Transient Diagnostics Using Classification and AutoML" @default.
- W3175082072 cites W1506599647 @default.
- W3175082072 cites W1903509702 @default.
- W3175082072 cites W1996607399 @default.
- W3175082072 cites W2309832917 @default.
- W3175082072 cites W2769303435 @default.
- W3175082072 cites W2797844224 @default.
- W3175082072 cites W2921851601 @default.
- W3175082072 cites W2954316518 @default.
- W3175082072 cites W2957715792 @default.
- W3175082072 cites W2961720880 @default.
- W3175082072 cites W2982534622 @default.
- W3175082072 doi "https://doi.org/10.1080/00295450.2021.1905470" @default.
- W3175082072 hasPublicationYear "2021" @default.
- W3175082072 type Work @default.
- W3175082072 sameAs 3175082072 @default.
- W3175082072 citedByCount "4" @default.
- W3175082072 countsByYear W31750820722022 @default.
- W3175082072 crossrefType "journal-article" @default.
- W3175082072 hasAuthorship W3175082072A5015830195 @default.
- W3175082072 hasAuthorship W3175082072A5084318561 @default.
- W3175082072 hasAuthorship W3175082072A5087443925 @default.
- W3175082072 hasConcept C111919701 @default.
- W3175082072 hasConcept C116915560 @default.
- W3175082072 hasConcept C119857082 @default.
- W3175082072 hasConcept C127413603 @default.
- W3175082072 hasConcept C148483581 @default.
- W3175082072 hasConcept C154945302 @default.
- W3175082072 hasConcept C41008148 @default.
- W3175082072 hasConcept C519991488 @default.
- W3175082072 hasConcept C541523362 @default.
- W3175082072 hasConceptScore W3175082072C111919701 @default.
- W3175082072 hasConceptScore W3175082072C116915560 @default.
- W3175082072 hasConceptScore W3175082072C119857082 @default.
- W3175082072 hasConceptScore W3175082072C127413603 @default.
- W3175082072 hasConceptScore W3175082072C148483581 @default.
- W3175082072 hasConceptScore W3175082072C154945302 @default.
- W3175082072 hasConceptScore W3175082072C41008148 @default.
- W3175082072 hasConceptScore W3175082072C519991488 @default.
- W3175082072 hasConceptScore W3175082072C541523362 @default.
- W3175082072 hasIssue "2" @default.
- W3175082072 hasLocation W31750820721 @default.
- W3175082072 hasOpenAccess W3175082072 @default.
- W3175082072 hasPrimaryLocation W31750820721 @default.
- W3175082072 hasRelatedWork W2891993883 @default.
- W3175082072 hasRelatedWork W2979801952 @default.
- W3175082072 hasRelatedWork W3174196512 @default.
- W3175082072 hasRelatedWork W3200179079 @default.
- W3175082072 hasRelatedWork W3210877509 @default.
- W3175082072 hasRelatedWork W4212852473 @default.
- W3175082072 hasRelatedWork W4225360065 @default.
- W3175082072 hasRelatedWork W4285815787 @default.
- W3175082072 hasRelatedWork W4293525103 @default.
- W3175082072 hasRelatedWork W4312949351 @default.
- W3175082072 hasVolume "208" @default.
- W3175082072 isParatext "false" @default.
- W3175082072 isRetracted "false" @default.
- W3175082072 magId "3175082072" @default.
- W3175082072 workType "article" @default.