Matches in SemOpenAlex for { <https://semopenalex.org/work/W3175157054> ?p ?o ?g. }
- W3175157054 abstract "As the quality of mobile cameras starts to play a crucial role in modern smartphones, more and more attention is now being paid to ISP algorithms used to improve various perceptual aspects of mobile photos. In this Mobile AI challenge, the target was to develop an end-to-end deep learning-based image signal processing (ISP) pipeline that can replace classical hand-crafted ISPs and achieve nearly real-time performance on smartphone NPUs. For this, the participants were provided with a novel learned ISP dataset consisting of RAW-RGB image pairs captured with the Sony IMX586 Quad Bayer mobile sensor and a professional 102-megapixel medium format camera. The runtime of all models was evaluated on the MediaTek Dimensity 1000+ platform with a dedicated AI processing unit capable of accelerating both floating-point and quantized neural networks. The proposed solutions are fully compatible with the above NPU and are capable of processing Full HD photos under 60-100 milliseconds while achieving high fidelity results. A detailed description of all models developed in this challenge is provided in this paper." @default.
- W3175157054 created "2021-07-05" @default.
- W3175157054 creator A5003623777 @default.
- W3175157054 creator A5005359195 @default.
- W3175157054 creator A5007305393 @default.
- W3175157054 creator A5011375643 @default.
- W3175157054 creator A5014088674 @default.
- W3175157054 creator A5015716999 @default.
- W3175157054 creator A5015944776 @default.
- W3175157054 creator A5016038246 @default.
- W3175157054 creator A5016353272 @default.
- W3175157054 creator A5016644869 @default.
- W3175157054 creator A5017059427 @default.
- W3175157054 creator A5017716310 @default.
- W3175157054 creator A5018471750 @default.
- W3175157054 creator A5022836568 @default.
- W3175157054 creator A5023195990 @default.
- W3175157054 creator A5024646639 @default.
- W3175157054 creator A5026476004 @default.
- W3175157054 creator A5026891137 @default.
- W3175157054 creator A5027950648 @default.
- W3175157054 creator A5030098677 @default.
- W3175157054 creator A5030340442 @default.
- W3175157054 creator A5031915539 @default.
- W3175157054 creator A5033190336 @default.
- W3175157054 creator A5042627504 @default.
- W3175157054 creator A5047033264 @default.
- W3175157054 creator A5049038214 @default.
- W3175157054 creator A5050712003 @default.
- W3175157054 creator A5050971812 @default.
- W3175157054 creator A5051969162 @default.
- W3175157054 creator A5052236177 @default.
- W3175157054 creator A5058658637 @default.
- W3175157054 creator A5063245344 @default.
- W3175157054 creator A5072235948 @default.
- W3175157054 creator A5073391891 @default.
- W3175157054 creator A5075373716 @default.
- W3175157054 creator A5076666554 @default.
- W3175157054 creator A5076863944 @default.
- W3175157054 creator A5087308525 @default.
- W3175157054 creator A5088397615 @default.
- W3175157054 creator A5089066381 @default.
- W3175157054 creator A5091053091 @default.
- W3175157054 date "2021-06-01" @default.
- W3175157054 modified "2023-10-18" @default.
- W3175157054 title "Learned Smartphone ISP on Mobile NPUs with Deep Learning, Mobile AI 2021 Challenge: Report" @default.
- W3175157054 cites W2607202125 @default.
- W3175157054 cites W2805467605 @default.
- W3175157054 cites W2915130236 @default.
- W3175157054 cites W2954506705 @default.
- W3175157054 cites W2963122961 @default.
- W3175157054 cites W2963684405 @default.
- W3175157054 cites W2963918968 @default.
- W3175157054 cites W2967733054 @default.
- W3175157054 cites W2967997213 @default.
- W3175157054 cites W2982083293 @default.
- W3175157054 cites W2984618279 @default.
- W3175157054 cites W2989808579 @default.
- W3175157054 cites W2996870660 @default.
- W3175157054 cites W2997300022 @default.
- W3175157054 cites W2998506323 @default.
- W3175157054 cites W2999803881 @default.
- W3175157054 cites W3012322483 @default.
- W3175157054 cites W3034609471 @default.
- W3175157054 cites W3034940165 @default.
- W3175157054 cites W3034960835 @default.
- W3175157054 cites W3035381835 @default.
- W3175157054 cites W3035639825 @default.
- W3175157054 cites W3044553317 @default.
- W3175157054 cites W3127229141 @default.
- W3175157054 cites W3134235012 @default.
- W3175157054 cites W3135799625 @default.
- W3175157054 cites W3167674261 @default.
- W3175157054 doi "https://doi.org/10.1109/cvprw53098.2021.00284" @default.
- W3175157054 hasPublicationYear "2021" @default.
- W3175157054 type Work @default.
- W3175157054 sameAs 3175157054 @default.
- W3175157054 citedByCount "14" @default.
- W3175157054 countsByYear W31751570542021 @default.
- W3175157054 countsByYear W31751570542022 @default.
- W3175157054 countsByYear W31751570542023 @default.
- W3175157054 crossrefType "proceedings-article" @default.
- W3175157054 hasAuthorship W3175157054A5003623777 @default.
- W3175157054 hasAuthorship W3175157054A5005359195 @default.
- W3175157054 hasAuthorship W3175157054A5007305393 @default.
- W3175157054 hasAuthorship W3175157054A5011375643 @default.
- W3175157054 hasAuthorship W3175157054A5014088674 @default.
- W3175157054 hasAuthorship W3175157054A5015716999 @default.
- W3175157054 hasAuthorship W3175157054A5015944776 @default.
- W3175157054 hasAuthorship W3175157054A5016038246 @default.
- W3175157054 hasAuthorship W3175157054A5016353272 @default.
- W3175157054 hasAuthorship W3175157054A5016644869 @default.
- W3175157054 hasAuthorship W3175157054A5017059427 @default.
- W3175157054 hasAuthorship W3175157054A5017716310 @default.
- W3175157054 hasAuthorship W3175157054A5018471750 @default.
- W3175157054 hasAuthorship W3175157054A5022836568 @default.
- W3175157054 hasAuthorship W3175157054A5023195990 @default.
- W3175157054 hasAuthorship W3175157054A5024646639 @default.
- W3175157054 hasAuthorship W3175157054A5026476004 @default.
- W3175157054 hasAuthorship W3175157054A5026891137 @default.