Matches in SemOpenAlex for { <https://semopenalex.org/work/W3175157436> ?p ?o ?g. }
- W3175157436 endingPage "100482" @default.
- W3175157436 startingPage "100482" @default.
- W3175157436 abstract "Machine learning (ML) has experienced rapid development in recent years and been widely applied to assist studies in various research areas. Two-dimensional (2D) materials, due to their unique chemical and physical properties, have been receiving increasing attention since the isolation of graphene. The combination of ML and 2D materials science has significantly accelerated the development of new functional 2D materials, and a timely review may inspire further ML-assisted 2D materials development. In this review, we provide a horizontal and vertical summary of the recent advances at the intersection of the fields of ML and 2D materials, discussing ML-assisted 2D materials preparation (design, discovery, and synthesis of 2D materials), atomistic structure analysis (structure identification and formation mechanism), and properties prediction (electronic properties, thermodynamic properties, mechanical properties, and other properties) and revealing their connections. Finally, we highlight current research challenges and provide insight into future research opportunities. The combination of machine learning and 2D materials science has significantly accelerated the development of functional 2D materials. In this review, Yin et al. provide a horizontal and vertical summary of the recent advances at the intersection of the two fields, covering ML-assisted materials discovery, atomistic structure analysis, and property prediction." @default.
- W3175157436 created "2021-07-05" @default.
- W3175157436 creator A5016135742 @default.
- W3175157436 creator A5021886180 @default.
- W3175157436 creator A5042950886 @default.
- W3175157436 creator A5053034187 @default.
- W3175157436 creator A5074090421 @default.
- W3175157436 creator A5075645847 @default.
- W3175157436 creator A5080268249 @default.
- W3175157436 creator A5080884747 @default.
- W3175157436 creator A5081145014 @default.
- W3175157436 date "2021-07-01" @default.
- W3175157436 modified "2023-10-17" @default.
- W3175157436 title "The data-intensive scientific revolution occurring where two-dimensional materials meet machine learning" @default.
- W3175157436 cites W1901616594 @default.
- W3175157436 cites W1984535384 @default.
- W3175157436 cites W1986255237 @default.
- W3175157436 cites W2013218562 @default.
- W3175157436 cites W2041311241 @default.
- W3175157436 cites W2058122340 @default.
- W3175157436 cites W2066563836 @default.
- W3175157436 cites W2069539594 @default.
- W3175157436 cites W2084253064 @default.
- W3175157436 cites W2085560362 @default.
- W3175157436 cites W2086382244 @default.
- W3175157436 cites W2089592248 @default.
- W3175157436 cites W2090749239 @default.
- W3175157436 cites W2113867563 @default.
- W3175157436 cites W2139393388 @default.
- W3175157436 cites W2151516307 @default.
- W3175157436 cites W2297432180 @default.
- W3175157436 cites W2298317828 @default.
- W3175157436 cites W2338402873 @default.
- W3175157436 cites W2410576307 @default.
- W3175157436 cites W2508390250 @default.
- W3175157436 cites W2514271442 @default.
- W3175157436 cites W2525422087 @default.
- W3175157436 cites W2547447472 @default.
- W3175157436 cites W2553169220 @default.
- W3175157436 cites W2589828607 @default.
- W3175157436 cites W2741168130 @default.
- W3175157436 cites W2742835787 @default.
- W3175157436 cites W2771733300 @default.
- W3175157436 cites W2774977638 @default.
- W3175157436 cites W2787089463 @default.
- W3175157436 cites W2789590546 @default.
- W3175157436 cites W2793369479 @default.
- W3175157436 cites W2794979247 @default.
- W3175157436 cites W2804431384 @default.
- W3175157436 cites W2805002767 @default.
- W3175157436 cites W2806275814 @default.
- W3175157436 cites W2806393871 @default.
- W3175157436 cites W2883583109 @default.
- W3175157436 cites W2884430236 @default.
- W3175157436 cites W2887089035 @default.
- W3175157436 cites W2892931461 @default.
- W3175157436 cites W2893015274 @default.
- W3175157436 cites W2902474336 @default.
- W3175157436 cites W2904011769 @default.
- W3175157436 cites W2914498164 @default.
- W3175157436 cites W2915040787 @default.
- W3175157436 cites W2917608392 @default.
- W3175157436 cites W2920535269 @default.
- W3175157436 cites W2921963218 @default.
- W3175157436 cites W2929465105 @default.
- W3175157436 cites W2937182854 @default.
- W3175157436 cites W2940452470 @default.
- W3175157436 cites W2943147869 @default.
- W3175157436 cites W2944107489 @default.
- W3175157436 cites W2948516417 @default.
- W3175157436 cites W2951499692 @default.
- W3175157436 cites W2952126818 @default.
- W3175157436 cites W2953641512 @default.
- W3175157436 cites W2959912498 @default.
- W3175157436 cites W2961960358 @default.
- W3175157436 cites W2966125139 @default.
- W3175157436 cites W2970730436 @default.
- W3175157436 cites W2971894235 @default.
- W3175157436 cites W2972765272 @default.
- W3175157436 cites W2972796812 @default.
- W3175157436 cites W2978186833 @default.
- W3175157436 cites W2979272349 @default.
- W3175157436 cites W2981825398 @default.
- W3175157436 cites W2986054123 @default.
- W3175157436 cites W2988742961 @default.
- W3175157436 cites W3001862030 @default.
- W3175157436 cites W3003209620 @default.
- W3175157436 cites W3003769243 @default.
- W3175157436 cites W3004987252 @default.
- W3175157436 cites W3010262144 @default.
- W3175157436 cites W3010616240 @default.
- W3175157436 cites W3011220106 @default.
- W3175157436 cites W3014405290 @default.
- W3175157436 cites W3014677556 @default.
- W3175157436 cites W3025104221 @default.
- W3175157436 cites W3026094172 @default.
- W3175157436 cites W3032943144 @default.
- W3175157436 cites W3033077604 @default.