Matches in SemOpenAlex for { <https://semopenalex.org/work/W3175173046> ?p ?o ?g. }
- W3175173046 abstract "Community structure detection is one of the fundamental problems in complex network analysis towards understanding the topology structure and function of the network. Modularity is a criterion to evaluate the quality of community structures, and optimization of this quality function over the possible divisions of a network is a sensitive detection method for community structure. However, the direct application of this method is computationally costly. Nonnegative matrix factorization (NMF) is a widely used method for community detection. In this paper, we show that modularity maximization can be approximately reformulated under the framework of NMF with Frobenius norm, especially when [Formula: see text] is large. A new algorithm for detecting community structure is proposed based on the above finding. The new method is compared with four state-of-the-art methods on both synthetic and real-world networks, showing its higher clustering quality over the existing methods." @default.
- W3175173046 created "2021-07-05" @default.
- W3175173046 creator A5009025817 @default.
- W3175173046 creator A5015714211 @default.
- W3175173046 creator A5024376726 @default.
- W3175173046 creator A5042665218 @default.
- W3175173046 creator A5051230002 @default.
- W3175173046 date "2021-06-17" @default.
- W3175173046 modified "2023-09-25" @default.
- W3175173046 title "Optimizing modularity with nonnegative matrix factorization" @default.
- W3175173046 cites W1890810769 @default.
- W3175173046 cites W1902027874 @default.
- W3175173046 cites W1971421925 @default.
- W3175173046 cites W1974790712 @default.
- W3175173046 cites W1985625141 @default.
- W3175173046 cites W1991408655 @default.
- W3175173046 cites W1995484313 @default.
- W3175173046 cites W2014259951 @default.
- W3175173046 cites W2015953751 @default.
- W3175173046 cites W2017987256 @default.
- W3175173046 cites W2033116442 @default.
- W3175173046 cites W2047940964 @default.
- W3175173046 cites W2066780923 @default.
- W3175173046 cites W2082380642 @default.
- W3175173046 cites W2086805702 @default.
- W3175173046 cites W2089458547 @default.
- W3175173046 cites W2090649417 @default.
- W3175173046 cites W2095189226 @default.
- W3175173046 cites W2095293504 @default.
- W3175173046 cites W2101412812 @default.
- W3175173046 cites W2111642621 @default.
- W3175173046 cites W2120043163 @default.
- W3175173046 cites W2127048411 @default.
- W3175173046 cites W2131681506 @default.
- W3175173046 cites W2136468592 @default.
- W3175173046 cites W2144750001 @default.
- W3175173046 cites W2148606196 @default.
- W3175173046 cites W2151936673 @default.
- W3175173046 cites W2156028561 @default.
- W3175173046 cites W2233410467 @default.
- W3175173046 cites W2338649679 @default.
- W3175173046 cites W2416738288 @default.
- W3175173046 cites W2580917121 @default.
- W3175173046 cites W2769133055 @default.
- W3175173046 cites W2802815569 @default.
- W3175173046 cites W2905416607 @default.
- W3175173046 cites W2922435284 @default.
- W3175173046 cites W2964071998 @default.
- W3175173046 cites W2989777964 @default.
- W3175173046 cites W2996522571 @default.
- W3175173046 cites W3038037918 @default.
- W3175173046 cites W3122550167 @default.
- W3175173046 doi "https://doi.org/10.1142/s0129183121501424" @default.
- W3175173046 hasPublicationYear "2021" @default.
- W3175173046 type Work @default.
- W3175173046 sameAs 3175173046 @default.
- W3175173046 citedByCount "0" @default.
- W3175173046 crossrefType "journal-article" @default.
- W3175173046 hasAuthorship W3175173046A5009025817 @default.
- W3175173046 hasAuthorship W3175173046A5015714211 @default.
- W3175173046 hasAuthorship W3175173046A5024376726 @default.
- W3175173046 hasAuthorship W3175173046A5042665218 @default.
- W3175173046 hasAuthorship W3175173046A5051230002 @default.
- W3175173046 hasConcept C11413529 @default.
- W3175173046 hasConcept C114614502 @default.
- W3175173046 hasConcept C121332964 @default.
- W3175173046 hasConcept C124101348 @default.
- W3175173046 hasConcept C126255220 @default.
- W3175173046 hasConcept C128243737 @default.
- W3175173046 hasConcept C133079900 @default.
- W3175173046 hasConcept C14036430 @default.
- W3175173046 hasConcept C152671427 @default.
- W3175173046 hasConcept C154945302 @default.
- W3175173046 hasConcept C158693339 @default.
- W3175173046 hasConcept C2776330181 @default.
- W3175173046 hasConcept C2779478453 @default.
- W3175173046 hasConcept C33923547 @default.
- W3175173046 hasConcept C41008148 @default.
- W3175173046 hasConcept C42355184 @default.
- W3175173046 hasConcept C54355233 @default.
- W3175173046 hasConcept C62520636 @default.
- W3175173046 hasConcept C73555534 @default.
- W3175173046 hasConcept C78458016 @default.
- W3175173046 hasConcept C86803240 @default.
- W3175173046 hasConcept C92207270 @default.
- W3175173046 hasConceptScore W3175173046C11413529 @default.
- W3175173046 hasConceptScore W3175173046C114614502 @default.
- W3175173046 hasConceptScore W3175173046C121332964 @default.
- W3175173046 hasConceptScore W3175173046C124101348 @default.
- W3175173046 hasConceptScore W3175173046C126255220 @default.
- W3175173046 hasConceptScore W3175173046C128243737 @default.
- W3175173046 hasConceptScore W3175173046C133079900 @default.
- W3175173046 hasConceptScore W3175173046C14036430 @default.
- W3175173046 hasConceptScore W3175173046C152671427 @default.
- W3175173046 hasConceptScore W3175173046C154945302 @default.
- W3175173046 hasConceptScore W3175173046C158693339 @default.
- W3175173046 hasConceptScore W3175173046C2776330181 @default.
- W3175173046 hasConceptScore W3175173046C2779478453 @default.
- W3175173046 hasConceptScore W3175173046C33923547 @default.
- W3175173046 hasConceptScore W3175173046C41008148 @default.