Matches in SemOpenAlex for { <https://semopenalex.org/work/W3175217910> ?p ?o ?g. }
- W3175217910 endingPage "121306" @default.
- W3175217910 startingPage "121306" @default.
- W3175217910 abstract "Wind speed forecast can effectively guide power grid to schedule adjustable sources to smooth wind uncertainty and ensure system stability. But due to the limited regulating range and velocity of complementary supplies, insufficient capacities can't match wind variations completely always leading wind curtailments and wastes. So wind fluctuation scope and change rate predictions are also highly crucial for dispatching to make more thorough deployments. Therefore, this paper introduces turbulence standard deviation and wind variogram to physically depict these two properties and develops probabilistic short-term combination forecast approach for them and wind speed. This method is based on multi-task one-dimensional convolutional neural network including shared layer to extract information criteria-determined input correlations and task layer to fine-tune output accuracies. And attention mechanism is innovatively added for certain samples to better cater for the wind speed-power curve demand. Results indicate the models stably outperform frequently-used competitors for those more important samples. Then multivariate copula method is employed for the joint distribution estimations of forecasts and actual data to generate conditional fluctuation intervals for each parameter. Superior assessments on test set confirm the validity and generalization of this approach which can provide reliable probabilistic manifold information for adjustable power scheduling." @default.
- W3175217910 created "2021-07-05" @default.
- W3175217910 creator A5004355445 @default.
- W3175217910 creator A5044124694 @default.
- W3175217910 creator A5053381821 @default.
- W3175217910 creator A5061917583 @default.
- W3175217910 creator A5077654483 @default.
- W3175217910 creator A5085065604 @default.
- W3175217910 date "2021-11-01" @default.
- W3175217910 modified "2023-10-10" @default.
- W3175217910 title "Short-term probabilistic predictions of wind multi-parameter based on one-dimensional convolutional neural network with attention mechanism and multivariate copula distribution estimation" @default.
- W3175217910 cites W1517366800 @default.
- W3175217910 cites W2038127554 @default.
- W3175217910 cites W2039306928 @default.
- W3175217910 cites W2058504886 @default.
- W3175217910 cites W2142635246 @default.
- W3175217910 cites W2168175751 @default.
- W3175217910 cites W2205533964 @default.
- W3175217910 cites W2486851875 @default.
- W3175217910 cites W2759814212 @default.
- W3175217910 cites W2770355008 @default.
- W3175217910 cites W2789689614 @default.
- W3175217910 cites W2801540881 @default.
- W3175217910 cites W2806372086 @default.
- W3175217910 cites W2888884990 @default.
- W3175217910 cites W2890672150 @default.
- W3175217910 cites W2892548317 @default.
- W3175217910 cites W2901152441 @default.
- W3175217910 cites W2908011737 @default.
- W3175217910 cites W2910048970 @default.
- W3175217910 cites W2912460500 @default.
- W3175217910 cites W2912708602 @default.
- W3175217910 cites W2914823774 @default.
- W3175217910 cites W2915806950 @default.
- W3175217910 cites W2920894825 @default.
- W3175217910 cites W2921731747 @default.
- W3175217910 cites W2926876256 @default.
- W3175217910 cites W2939128179 @default.
- W3175217910 cites W2943991646 @default.
- W3175217910 cites W2954586649 @default.
- W3175217910 cites W2960065449 @default.
- W3175217910 cites W2961011421 @default.
- W3175217910 cites W2965411974 @default.
- W3175217910 cites W2966475988 @default.
- W3175217910 cites W2972065288 @default.
- W3175217910 cites W2973003627 @default.
- W3175217910 cites W2974087501 @default.
- W3175217910 cites W2978660604 @default.
- W3175217910 cites W2981345666 @default.
- W3175217910 cites W2983772465 @default.
- W3175217910 cites W2989494743 @default.
- W3175217910 cites W2992093941 @default.
- W3175217910 cites W2998188743 @default.
- W3175217910 cites W2998687139 @default.
- W3175217910 cites W3004386013 @default.
- W3175217910 cites W3019251610 @default.
- W3175217910 cites W3036378294 @default.
- W3175217910 cites W3036688307 @default.
- W3175217910 cites W3038702313 @default.
- W3175217910 cites W3039344276 @default.
- W3175217910 cites W3046194311 @default.
- W3175217910 cites W3046247825 @default.
- W3175217910 cites W3083236402 @default.
- W3175217910 cites W3097305716 @default.
- W3175217910 cites W3107023852 @default.
- W3175217910 cites W3107942868 @default.
- W3175217910 cites W3130808753 @default.
- W3175217910 cites W3135463282 @default.
- W3175217910 cites W789266749 @default.
- W3175217910 doi "https://doi.org/10.1016/j.energy.2021.121306" @default.
- W3175217910 hasPublicationYear "2021" @default.
- W3175217910 type Work @default.
- W3175217910 sameAs 3175217910 @default.
- W3175217910 citedByCount "19" @default.
- W3175217910 countsByYear W31752179102022 @default.
- W3175217910 countsByYear W31752179102023 @default.
- W3175217910 crossrefType "journal-article" @default.
- W3175217910 hasAuthorship W3175217910A5004355445 @default.
- W3175217910 hasAuthorship W3175217910A5044124694 @default.
- W3175217910 hasAuthorship W3175217910A5053381821 @default.
- W3175217910 hasAuthorship W3175217910A5061917583 @default.
- W3175217910 hasAuthorship W3175217910A5077654483 @default.
- W3175217910 hasAuthorship W3175217910A5085065604 @default.
- W3175217910 hasConcept C119599485 @default.
- W3175217910 hasConcept C121332964 @default.
- W3175217910 hasConcept C122282355 @default.
- W3175217910 hasConcept C126255220 @default.
- W3175217910 hasConcept C127413603 @default.
- W3175217910 hasConcept C149782125 @default.
- W3175217910 hasConcept C153294291 @default.
- W3175217910 hasConcept C154945302 @default.
- W3175217910 hasConcept C161067210 @default.
- W3175217910 hasConcept C17618745 @default.
- W3175217910 hasConcept C33923547 @default.
- W3175217910 hasConcept C41008148 @default.
- W3175217910 hasConcept C49937458 @default.
- W3175217910 hasConcept C78600449 @default.
- W3175217910 hasConceptScore W3175217910C119599485 @default.