Matches in SemOpenAlex for { <https://semopenalex.org/work/W3175254949> ?p ?o ?g. }
- W3175254949 endingPage "101357" @default.
- W3175254949 startingPage "101357" @default.
- W3175254949 abstract "Solar cells formed by the combination of organic and inorganic nanoparticle semiconductors are gaining interest in today’s era because of their major features, such as being suitable for scalable solar power conversion and being of low cost to produce desirable photovoltaic devices. This work is an attempt to develop two forms of hybrid solar cells, one by the amalgamation of zinc oxide and carbon quantum dots and second, by incorporating graphene oxide into zinc oxide. In this study, optimization, validation, and comparison of the photovoltaic parameters of the two nanostructured solar cells were attempted using the Artificial Neural Network technique. The ANN was instructed using the Firefly Algorithm. The input parameters are the spectral power density and temperature. The output parameters are the short circuit current (ISC), open-circuit voltage (VOC), fill factor of the cell (FF), and maximum voltage point prediction (VMPP). The results obtained for both the hybrid solar cells were compared and it was noted that the addition of CQDs to ZnO resulted in a considerable increase in the values of ISC, VOC and FF. The output obtained by the ANN trained model was compared with the results obtained from the experimental tests. It is observed that there is considerable agreement between the results obtained from the ANN and experimental values. The optimized values of VOC, ISC, FF, VMPP, Incident Photon to Current Efficiency (IPCE), Power Conversion Efficiency (PCE) for ZnO/GO are 0.623 V, 0.546 mA, 62%, 0.509 V, 36.95%, 9.12% respectively. Similarly values of VOC, ISC, FF, VMPP, IPCE, PCE for ZnO/CQDs are 0.636 V, 0.597 mA, 68%, 0.531 V, 40.72%, 10.35% respectively. Therefore, the precise values of all the stated parameters were obtained for both the cells after optimization and hybrid cells made of CQDs proves to be a better candidate. Also, the desirable value of the coefficient of correlation (R) is obtained, approximately close to 1, which means that the fabricated samples are efficient for useful applications. Proper execution of this algorithm on any model of the hybrid solar cell can lead to an evolution in the field of solar cells, resulting in the improvement of efficiency. These optimized cells have been utilized to propose two models of solar trigeneration system used in a commercial building North Service Centre (Olefin building) of Haldia Petrochemicals Limited, Haldia, West Bengal, India. The trigeneration systems were based on photovoltaic modules, heat pump and photovoltaic-thermal collectors. The objective is to provide enough electricity, domestic hot water, heating and cooling power to meet the typical demand of a single office building. System performance has been predicted and evaluated in the work. Considerations should be made regarding the physical constraints imposed by the environment where the installation has to be performed. The location should be carefully selected to achieve maximum efficiency." @default.
- W3175254949 created "2021-07-05" @default.
- W3175254949 creator A5049652145 @default.
- W3175254949 creator A5061495937 @default.
- W3175254949 creator A5075749203 @default.
- W3175254949 creator A5091278610 @default.
- W3175254949 date "2021-10-01" @default.
- W3175254949 modified "2023-10-18" @default.
- W3175254949 title "Optimization and Comparison of Photovoltaic Parameters of Zinc Oxide (ZnO)/Graphene Oxide (GO) and Zinc Oxide (ZnO)/Carbon Quantum Dots (CQDs) Hybrid solar cell using Firefly Algorithm for application in Solar Trigeneration System in Commercial Buildings" @default.
- W3175254949 cites W1174313541 @default.
- W3175254949 cites W1478353461 @default.
- W3175254949 cites W1494178231 @default.
- W3175254949 cites W1535712589 @default.
- W3175254949 cites W1920673821 @default.
- W3175254949 cites W1977596813 @default.
- W3175254949 cites W2007864618 @default.
- W3175254949 cites W2009641652 @default.
- W3175254949 cites W2020414814 @default.
- W3175254949 cites W2021095700 @default.
- W3175254949 cites W2044587647 @default.
- W3175254949 cites W2057449469 @default.
- W3175254949 cites W2065928371 @default.
- W3175254949 cites W2079706177 @default.
- W3175254949 cites W2095212963 @default.
- W3175254949 cites W2121336880 @default.
- W3175254949 cites W2129479958 @default.
- W3175254949 cites W2147767696 @default.
- W3175254949 cites W2167942687 @default.
- W3175254949 cites W2169510396 @default.
- W3175254949 cites W2314153399 @default.
- W3175254949 cites W2412126317 @default.
- W3175254949 cites W2508780018 @default.
- W3175254949 cites W2564577580 @default.
- W3175254949 cites W2750508540 @default.
- W3175254949 cites W2756513271 @default.
- W3175254949 cites W2774142005 @default.
- W3175254949 cites W2788672209 @default.
- W3175254949 cites W2792305278 @default.
- W3175254949 cites W2793056669 @default.
- W3175254949 cites W2795975439 @default.
- W3175254949 cites W2811227918 @default.
- W3175254949 cites W2895622863 @default.
- W3175254949 cites W2897328490 @default.
- W3175254949 cites W2945950309 @default.
- W3175254949 cites W2972655406 @default.
- W3175254949 cites W3005854818 @default.
- W3175254949 cites W3084860788 @default.
- W3175254949 doi "https://doi.org/10.1016/j.seta.2021.101357" @default.
- W3175254949 hasPublicationYear "2021" @default.
- W3175254949 type Work @default.
- W3175254949 sameAs 3175254949 @default.
- W3175254949 citedByCount "5" @default.
- W3175254949 countsByYear W31752549492022 @default.
- W3175254949 crossrefType "journal-article" @default.
- W3175254949 hasAuthorship W3175254949A5049652145 @default.
- W3175254949 hasAuthorship W3175254949A5061495937 @default.
- W3175254949 hasAuthorship W3175254949A5075749203 @default.
- W3175254949 hasAuthorship W3175254949A5091278610 @default.
- W3175254949 hasConcept C11413529 @default.
- W3175254949 hasConcept C116615679 @default.
- W3175254949 hasConcept C119599485 @default.
- W3175254949 hasConcept C124657808 @default.
- W3175254949 hasConcept C127413603 @default.
- W3175254949 hasConcept C154982244 @default.
- W3175254949 hasConcept C165801399 @default.
- W3175254949 hasConcept C171250308 @default.
- W3175254949 hasConcept C191897082 @default.
- W3175254949 hasConcept C192562407 @default.
- W3175254949 hasConcept C206991015 @default.
- W3175254949 hasConcept C2780824857 @default.
- W3175254949 hasConcept C30080830 @default.
- W3175254949 hasConcept C41008148 @default.
- W3175254949 hasConcept C41291067 @default.
- W3175254949 hasConcept C49040817 @default.
- W3175254949 hasConcept C535196362 @default.
- W3175254949 hasConcept C57631264 @default.
- W3175254949 hasConcept C68583231 @default.
- W3175254949 hasConcept C85617194 @default.
- W3175254949 hasConceptScore W3175254949C11413529 @default.
- W3175254949 hasConceptScore W3175254949C116615679 @default.
- W3175254949 hasConceptScore W3175254949C119599485 @default.
- W3175254949 hasConceptScore W3175254949C124657808 @default.
- W3175254949 hasConceptScore W3175254949C127413603 @default.
- W3175254949 hasConceptScore W3175254949C154982244 @default.
- W3175254949 hasConceptScore W3175254949C165801399 @default.
- W3175254949 hasConceptScore W3175254949C171250308 @default.
- W3175254949 hasConceptScore W3175254949C191897082 @default.
- W3175254949 hasConceptScore W3175254949C192562407 @default.
- W3175254949 hasConceptScore W3175254949C206991015 @default.
- W3175254949 hasConceptScore W3175254949C2780824857 @default.
- W3175254949 hasConceptScore W3175254949C30080830 @default.
- W3175254949 hasConceptScore W3175254949C41008148 @default.
- W3175254949 hasConceptScore W3175254949C41291067 @default.
- W3175254949 hasConceptScore W3175254949C49040817 @default.
- W3175254949 hasConceptScore W3175254949C535196362 @default.
- W3175254949 hasConceptScore W3175254949C57631264 @default.
- W3175254949 hasConceptScore W3175254949C68583231 @default.
- W3175254949 hasConceptScore W3175254949C85617194 @default.