Matches in SemOpenAlex for { <https://semopenalex.org/work/W3175286471> ?p ?o ?g. }
Showing items 1 to 49 of
49
with 100 items per page.
- W3175286471 endingPage "20" @default.
- W3175286471 startingPage "3" @default.
- W3175286471 abstract "Security issues in the Internet of Things (IoT) ecosystems are becoming a major concern for users, developers and business owners. The traditional security models are not full proof enough to handle security issues in a ubiquitous environment. Intelligent mechanisms have been developed to address loopholes in the security of network systems; nonetheless, cybercrimes have increased in the computing ecosystems due to increased surface of attacks created by the adoption of IoT. In the recent years Fog computing has been adopted to decentralize application and service provision. In this chapter we shed light on Fog computing security architecture. We concentrate on the role of machine learning (ML) in mitigating issues of security. We present a study that underlines the next-generation secure fog infrastructure. We further prompt concerns about threats, vulnerabilities and exploits in fog-cloud of things. In our work, we cautiously look at ML-based botnet detection, authentication, access control, botnet detection, malware detection and classification, and offloading. Lastly, this chapter discusses applications, opportunities, challenges and future trends." @default.
- W3175286471 created "2021-07-05" @default.
- W3175286471 creator A5009102100 @default.
- W3175286471 creator A5044633796 @default.
- W3175286471 creator A5059059950 @default.
- W3175286471 creator A5071647439 @default.
- W3175286471 creator A5076356625 @default.
- W3175286471 date "2021-06-28" @default.
- W3175286471 modified "2023-09-24" @default.
- W3175286471 title "Secure Fog-Cloud of Things" @default.
- W3175286471 doi "https://doi.org/10.1201/9781003028635-2" @default.
- W3175286471 hasPublicationYear "2021" @default.
- W3175286471 type Work @default.
- W3175286471 sameAs 3175286471 @default.
- W3175286471 citedByCount "3" @default.
- W3175286471 countsByYear W31752864712023 @default.
- W3175286471 crossrefType "book-chapter" @default.
- W3175286471 hasAuthorship W3175286471A5009102100 @default.
- W3175286471 hasAuthorship W3175286471A5044633796 @default.
- W3175286471 hasAuthorship W3175286471A5059059950 @default.
- W3175286471 hasAuthorship W3175286471A5071647439 @default.
- W3175286471 hasAuthorship W3175286471A5076356625 @default.
- W3175286471 hasConcept C111919701 @default.
- W3175286471 hasConcept C38652104 @default.
- W3175286471 hasConcept C41008148 @default.
- W3175286471 hasConcept C79974875 @default.
- W3175286471 hasConceptScore W3175286471C111919701 @default.
- W3175286471 hasConceptScore W3175286471C38652104 @default.
- W3175286471 hasConceptScore W3175286471C41008148 @default.
- W3175286471 hasConceptScore W3175286471C79974875 @default.
- W3175286471 hasLocation W31752864711 @default.
- W3175286471 hasOpenAccess W3175286471 @default.
- W3175286471 hasPrimaryLocation W31752864711 @default.
- W3175286471 hasRelatedWork W1806610636 @default.
- W3175286471 hasRelatedWork W1968675450 @default.
- W3175286471 hasRelatedWork W199776554 @default.
- W3175286471 hasRelatedWork W2021734246 @default.
- W3175286471 hasRelatedWork W2242743405 @default.
- W3175286471 hasRelatedWork W2772425874 @default.
- W3175286471 hasRelatedWork W2787415220 @default.
- W3175286471 hasRelatedWork W3211806875 @default.
- W3175286471 hasRelatedWork W4214805991 @default.
- W3175286471 hasRelatedWork W4295832427 @default.
- W3175286471 isParatext "false" @default.
- W3175286471 isRetracted "false" @default.
- W3175286471 magId "3175286471" @default.
- W3175286471 workType "book-chapter" @default.