Matches in SemOpenAlex for { <https://semopenalex.org/work/W3175292020> ?p ?o ?g. }
- W3175292020 abstract "The usefulness of genomic prediction (GP) for many animal and plant breeding programs has been highlighted for many studies in the last 20 years. In maize breeding programs, mostly dedicated to delivering more highly adapted and productive hybrids, this approach has been proved successful for both large- and small-scale breeding programs worldwide. Here, we present some of the strategies developed to improve the accuracy of GP in tropical maize, focusing on its use under low budget and small-scale conditions achieved for most of the hybrid breeding programs in developing countries. We highlight the most important outcomes obtained by the University of São Paulo (USP, Brazil) and how they can improve the accuracy of prediction in tropical maize hybrids. Our roadmap starts with the efforts for germplasm characterization, moving on to the practices for mating design, and the selection of the genotypes that are used to compose the training population in field phenotyping trials. Factors including population structure and the importance of non-additive effects (dominance and epistasis) controlling the desired trait are also outlined. Finally, we explain how the source of the molecular markers, environmental, and the modeling of genotype–environment interaction can affect the accuracy of GP. Results of 7 years of research in a public maize hybrid breeding program under tropical conditions are discussed, and with the great advances that have been made, we find that what is yet to come is exciting. The use of open-source software for the quality control of molecular markers, implementing GP, and envirotyping pipelines may reduce costs in an efficient computational manner. We conclude that exploring new models/tools using high-throughput phenotyping data along with large-scale envirotyping may bring more resolution and realism when predicting genotype performances. Despite the initial costs, mostly for genotyping, the GP platforms in combination with these other data sources can be a cost-effective approach for predicting the performance of maize hybrids for a large set of growing conditions." @default.
- W3175292020 created "2021-07-05" @default.
- W3175292020 creator A5008351488 @default.
- W3175292020 creator A5013298400 @default.
- W3175292020 creator A5047707615 @default.
- W3175292020 creator A5062321482 @default.
- W3175292020 creator A5063461066 @default.
- W3175292020 creator A5072849005 @default.
- W3175292020 creator A5076158905 @default.
- W3175292020 creator A5080763318 @default.
- W3175292020 creator A5081509574 @default.
- W3175292020 creator A5086793435 @default.
- W3175292020 creator A5089303411 @default.
- W3175292020 date "2021-07-01" @default.
- W3175292020 modified "2023-10-14" @default.
- W3175292020 title "Optimizing Genomic-Enabled Prediction in Small-Scale Maize Hybrid Breeding Programs: A Roadmap Review" @default.
- W3175292020 cites W1756006159 @default.
- W3175292020 cites W1928998639 @default.
- W3175292020 cites W1970149620 @default.
- W3175292020 cites W1975833638 @default.
- W3175292020 cites W1976575447 @default.
- W3175292020 cites W1978369346 @default.
- W3175292020 cites W1982553420 @default.
- W3175292020 cites W1988200920 @default.
- W3175292020 cites W2000046796 @default.
- W3175292020 cites W2001675230 @default.
- W3175292020 cites W2006026084 @default.
- W3175292020 cites W2030126026 @default.
- W3175292020 cites W2034423363 @default.
- W3175292020 cites W2047769598 @default.
- W3175292020 cites W2055404118 @default.
- W3175292020 cites W2064013109 @default.
- W3175292020 cites W2076300862 @default.
- W3175292020 cites W2078823676 @default.
- W3175292020 cites W2137566058 @default.
- W3175292020 cites W2141099825 @default.
- W3175292020 cites W2151391832 @default.
- W3175292020 cites W2170253902 @default.
- W3175292020 cites W2172569876 @default.
- W3175292020 cites W2239374790 @default.
- W3175292020 cites W2258788146 @default.
- W3175292020 cites W2284086940 @default.
- W3175292020 cites W2414852797 @default.
- W3175292020 cites W2492234307 @default.
- W3175292020 cites W2529536219 @default.
- W3175292020 cites W2536976622 @default.
- W3175292020 cites W2557414177 @default.
- W3175292020 cites W2607207785 @default.
- W3175292020 cites W2608691562 @default.
- W3175292020 cites W2617076315 @default.
- W3175292020 cites W2617080590 @default.
- W3175292020 cites W2728397586 @default.
- W3175292020 cites W2765640498 @default.
- W3175292020 cites W2766630000 @default.
- W3175292020 cites W2767698227 @default.
- W3175292020 cites W2788143107 @default.
- W3175292020 cites W2791298837 @default.
- W3175292020 cites W2792329433 @default.
- W3175292020 cites W2794365735 @default.
- W3175292020 cites W2807882982 @default.
- W3175292020 cites W2810942942 @default.
- W3175292020 cites W2883880894 @default.
- W3175292020 cites W2884074700 @default.
- W3175292020 cites W2892350385 @default.
- W3175292020 cites W2893673932 @default.
- W3175292020 cites W2897239638 @default.
- W3175292020 cites W2912353237 @default.
- W3175292020 cites W2940511043 @default.
- W3175292020 cites W2942014282 @default.
- W3175292020 cites W2945720445 @default.
- W3175292020 cites W2948564214 @default.
- W3175292020 cites W2952348048 @default.
- W3175292020 cites W2952918888 @default.
- W3175292020 cites W2955081287 @default.
- W3175292020 cites W2956663245 @default.
- W3175292020 cites W2983803089 @default.
- W3175292020 cites W2993063946 @default.
- W3175292020 cites W3004484935 @default.
- W3175292020 cites W3005923657 @default.
- W3175292020 cites W3007637688 @default.
- W3175292020 cites W3011172731 @default.
- W3175292020 cites W3011826307 @default.
- W3175292020 cites W3016724609 @default.
- W3175292020 cites W3024594274 @default.
- W3175292020 cites W3034733652 @default.
- W3175292020 cites W3037164352 @default.
- W3175292020 cites W3039960397 @default.
- W3175292020 cites W3043249140 @default.
- W3175292020 cites W3049755005 @default.
- W3175292020 cites W3080096554 @default.
- W3175292020 cites W3088933582 @default.
- W3175292020 cites W3090654058 @default.
- W3175292020 cites W3092627636 @default.
- W3175292020 cites W3093188317 @default.
- W3175292020 cites W3100894791 @default.
- W3175292020 cites W3112688983 @default.
- W3175292020 cites W3119786698 @default.
- W3175292020 cites W3128559770 @default.
- W3175292020 cites W3128924285 @default.
- W3175292020 cites W3130753674 @default.