Matches in SemOpenAlex for { <https://semopenalex.org/work/W3175320905> ?p ?o ?g. }
- W3175320905 endingPage "386" @default.
- W3175320905 startingPage "372" @default.
- W3175320905 abstract "Novel Luffa cylindrica seed (LCS) extracts obtained from different processing techniques were employed for coagulation/flocculation (CF) decontamination of dye-polluted wastewater (DPW). The DPW was simulated in the laboratory using Cibacron blue dye 3GA (a reactive, azo dye) and distilled water. The bio-coagulants' proximate and instrumental characterization was performed. The duo: Response Surface Methodology (RSM) and Artificial Neural Network (ANN) models were proposed to predict color/total suspended particle (CTSP) and chemical oxygen demand (COD) removal rate using bio-coagulants. Bio-coagulant dosage, wastewater pH, and stirring time are the input variables. Based on experimental designs, RSM and ANN models have been generated. Regression coefficient (R2) and mean square error (MSE) have been implemented and correlated to test the adequacy and predictive ability of both models. The fitness of the experimental values to the expected values established that the Sutherland extract performed better. The model indicator for Sutherland extract revealed as thus: RSM (R2,0.9886 and MSE, 1.4494) for CTSP, and (R2, 0.9921 and MSE, 0.9249) for COD; and ANN (R2, 0.9999 and MSE, 0.00000057) for CTSP and (R2, 0.9999 and MSE, 0.0000000457) for COD. The obtained results revealed that ANN model was preferred for predicting the removal of CSTP and COD from DPW." @default.
- W3175320905 created "2021-07-05" @default.
- W3175320905 creator A5006613411 @default.
- W3175320905 creator A5009225020 @default.
- W3175320905 creator A5009281745 @default.
- W3175320905 creator A5037745961 @default.
- W3175320905 creator A5039848924 @default.
- W3175320905 creator A5040212857 @default.
- W3175320905 creator A5042993663 @default.
- W3175320905 creator A5054269089 @default.
- W3175320905 date "2021-08-01" @default.
- W3175320905 modified "2023-10-18" @default.
- W3175320905 title "Dual-purpose optimization of dye-polluted wastewater decontamination using bio-coagulants from multiple processing techniques via neural intelligence algorithm and response surface methodology" @default.
- W3175320905 cites W1950721183 @default.
- W3175320905 cites W1971109601 @default.
- W3175320905 cites W2004847971 @default.
- W3175320905 cites W2007687477 @default.
- W3175320905 cites W2017273581 @default.
- W3175320905 cites W2035494359 @default.
- W3175320905 cites W2072082471 @default.
- W3175320905 cites W2090332669 @default.
- W3175320905 cites W2122782494 @default.
- W3175320905 cites W2152779201 @default.
- W3175320905 cites W2158500197 @default.
- W3175320905 cites W2229589130 @default.
- W3175320905 cites W2290596494 @default.
- W3175320905 cites W2301913151 @default.
- W3175320905 cites W2344197052 @default.
- W3175320905 cites W2361863901 @default.
- W3175320905 cites W2398489316 @default.
- W3175320905 cites W2474846753 @default.
- W3175320905 cites W2501962193 @default.
- W3175320905 cites W2738809920 @default.
- W3175320905 cites W2783572943 @default.
- W3175320905 cites W2802156495 @default.
- W3175320905 cites W2803907733 @default.
- W3175320905 cites W2806318775 @default.
- W3175320905 cites W2806945316 @default.
- W3175320905 cites W287243025 @default.
- W3175320905 cites W2883625956 @default.
- W3175320905 cites W2895752197 @default.
- W3175320905 cites W2922302395 @default.
- W3175320905 cites W2981642741 @default.
- W3175320905 cites W2982209356 @default.
- W3175320905 cites W3000546328 @default.
- W3175320905 cites W3001745303 @default.
- W3175320905 cites W3005682210 @default.
- W3175320905 cites W3007161450 @default.
- W3175320905 cites W3007516446 @default.
- W3175320905 cites W3008809059 @default.
- W3175320905 cites W3010735643 @default.
- W3175320905 cites W3011327819 @default.
- W3175320905 cites W3012263202 @default.
- W3175320905 cites W3014801836 @default.
- W3175320905 cites W3024145689 @default.
- W3175320905 cites W3027136882 @default.
- W3175320905 cites W3034066957 @default.
- W3175320905 cites W3081046933 @default.
- W3175320905 cites W3094378475 @default.
- W3175320905 cites W3098787144 @default.
- W3175320905 cites W3125218579 @default.
- W3175320905 cites W3130324371 @default.
- W3175320905 doi "https://doi.org/10.1016/j.jtice.2021.06.030" @default.
- W3175320905 hasPublicationYear "2021" @default.
- W3175320905 type Work @default.
- W3175320905 sameAs 3175320905 @default.
- W3175320905 citedByCount "33" @default.
- W3175320905 countsByYear W31753209052021 @default.
- W3175320905 countsByYear W31753209052022 @default.
- W3175320905 countsByYear W31753209052023 @default.
- W3175320905 crossrefType "journal-article" @default.
- W3175320905 hasAuthorship W3175320905A5006613411 @default.
- W3175320905 hasAuthorship W3175320905A5009225020 @default.
- W3175320905 hasAuthorship W3175320905A5009281745 @default.
- W3175320905 hasAuthorship W3175320905A5037745961 @default.
- W3175320905 hasAuthorship W3175320905A5039848924 @default.
- W3175320905 hasAuthorship W3175320905A5040212857 @default.
- W3175320905 hasAuthorship W3175320905A5042993663 @default.
- W3175320905 hasAuthorship W3175320905A5054269089 @default.
- W3175320905 hasConcept C105795698 @default.
- W3175320905 hasConcept C119857082 @default.
- W3175320905 hasConcept C127413603 @default.
- W3175320905 hasConcept C128990827 @default.
- W3175320905 hasConcept C139945424 @default.
- W3175320905 hasConcept C148815931 @default.
- W3175320905 hasConcept C150077022 @default.
- W3175320905 hasConcept C185592680 @default.
- W3175320905 hasConcept C188287460 @default.
- W3175320905 hasConcept C33923547 @default.
- W3175320905 hasConcept C39432304 @default.
- W3175320905 hasConcept C41008148 @default.
- W3175320905 hasConcept C43617362 @default.
- W3175320905 hasConcept C50644808 @default.
- W3175320905 hasConcept C528095902 @default.
- W3175320905 hasConcept C87717796 @default.
- W3175320905 hasConcept C94061648 @default.
- W3175320905 hasConceptScore W3175320905C105795698 @default.
- W3175320905 hasConceptScore W3175320905C119857082 @default.