Matches in SemOpenAlex for { <https://semopenalex.org/work/W3175339056> ?p ?o ?g. }
- W3175339056 endingPage "2150029" @default.
- W3175339056 startingPage "2150029" @default.
- W3175339056 abstract "Accurate weather prediction is always a challenge for meteorologists. This paper suggests a Deep Neural Network (DNN) model to predict minimum and maximum values of temperature based on various weather parameters such as humidity, dew point, and wind speed. Particle Swarm Optimisation (PSO) algorithm is applied to select relevant and important features of the datasets to improve the prediction accuracy of the model. The grid search algorithm is employed to determine the hyperparameters of the proposed DNN model. The statistical indicators Mean Square Error, Mean Absolute Error, Mean Absolute Percentage Error, Nash–Sutcliffe model efficiency coefficient, and Correlation Coefficient are used to evaluate the accuracy of the prediction model. Performance comparison of the proposed model is performed with the Support Vector Machine (SVM) and Vector Autoregression (VAR) models. The experimental outcomes show that the proposed model optimised using PSO achieves better prediction accuracy than traditional approaches." @default.
- W3175339056 created "2021-07-05" @default.
- W3175339056 creator A5028370662 @default.
- W3175339056 creator A5045474847 @default.
- W3175339056 date "2021-06-17" @default.
- W3175339056 modified "2023-09-27" @default.
- W3175339056 title "An Improved Multivariate Weather Prediction Model Using Deep Neural Networks and Particle Swarm Optimisation" @default.
- W3175339056 cites W1179140510 @default.
- W3175339056 cites W1826421496 @default.
- W3175339056 cites W1986491149 @default.
- W3175339056 cites W20141250 @default.
- W3175339056 cites W2070756367 @default.
- W3175339056 cites W2149156031 @default.
- W3175339056 cites W2152195021 @default.
- W3175339056 cites W2211479884 @default.
- W3175339056 cites W2263189687 @default.
- W3175339056 cites W2276751812 @default.
- W3175339056 cites W2290960045 @default.
- W3175339056 cites W2293337803 @default.
- W3175339056 cites W2443014316 @default.
- W3175339056 cites W2587853473 @default.
- W3175339056 cites W2603421041 @default.
- W3175339056 cites W2615493097 @default.
- W3175339056 cites W2764057481 @default.
- W3175339056 cites W2767072113 @default.
- W3175339056 cites W2771568419 @default.
- W3175339056 cites W2781104602 @default.
- W3175339056 cites W2793811319 @default.
- W3175339056 cites W2803408063 @default.
- W3175339056 cites W2885791861 @default.
- W3175339056 cites W2886807638 @default.
- W3175339056 cites W2902011852 @default.
- W3175339056 cites W2902428580 @default.
- W3175339056 cites W2911440187 @default.
- W3175339056 cites W2951251697 @default.
- W3175339056 cites W2961408987 @default.
- W3175339056 cites W2980101029 @default.
- W3175339056 cites W2998567488 @default.
- W3175339056 cites W3045133687 @default.
- W3175339056 cites W754866810 @default.
- W3175339056 doi "https://doi.org/10.1142/s0219649221500295" @default.
- W3175339056 hasPublicationYear "2021" @default.
- W3175339056 type Work @default.
- W3175339056 sameAs 3175339056 @default.
- W3175339056 citedByCount "2" @default.
- W3175339056 countsByYear W31753390562022 @default.
- W3175339056 crossrefType "journal-article" @default.
- W3175339056 hasAuthorship W3175339056A5028370662 @default.
- W3175339056 hasAuthorship W3175339056A5045474847 @default.
- W3175339056 hasConcept C10485038 @default.
- W3175339056 hasConcept C105795698 @default.
- W3175339056 hasConcept C11413529 @default.
- W3175339056 hasConcept C119857082 @default.
- W3175339056 hasConcept C121332964 @default.
- W3175339056 hasConcept C12267149 @default.
- W3175339056 hasConcept C124101348 @default.
- W3175339056 hasConcept C139945424 @default.
- W3175339056 hasConcept C150217764 @default.
- W3175339056 hasConcept C153294291 @default.
- W3175339056 hasConcept C154945302 @default.
- W3175339056 hasConcept C161067210 @default.
- W3175339056 hasConcept C2780092901 @default.
- W3175339056 hasConcept C33923547 @default.
- W3175339056 hasConcept C41008148 @default.
- W3175339056 hasConcept C50644808 @default.
- W3175339056 hasConcept C82210777 @default.
- W3175339056 hasConcept C85617194 @default.
- W3175339056 hasConcept C8642999 @default.
- W3175339056 hasConceptScore W3175339056C10485038 @default.
- W3175339056 hasConceptScore W3175339056C105795698 @default.
- W3175339056 hasConceptScore W3175339056C11413529 @default.
- W3175339056 hasConceptScore W3175339056C119857082 @default.
- W3175339056 hasConceptScore W3175339056C121332964 @default.
- W3175339056 hasConceptScore W3175339056C12267149 @default.
- W3175339056 hasConceptScore W3175339056C124101348 @default.
- W3175339056 hasConceptScore W3175339056C139945424 @default.
- W3175339056 hasConceptScore W3175339056C150217764 @default.
- W3175339056 hasConceptScore W3175339056C153294291 @default.
- W3175339056 hasConceptScore W3175339056C154945302 @default.
- W3175339056 hasConceptScore W3175339056C161067210 @default.
- W3175339056 hasConceptScore W3175339056C2780092901 @default.
- W3175339056 hasConceptScore W3175339056C33923547 @default.
- W3175339056 hasConceptScore W3175339056C41008148 @default.
- W3175339056 hasConceptScore W3175339056C50644808 @default.
- W3175339056 hasConceptScore W3175339056C82210777 @default.
- W3175339056 hasConceptScore W3175339056C85617194 @default.
- W3175339056 hasConceptScore W3175339056C8642999 @default.
- W3175339056 hasLocation W31753390561 @default.
- W3175339056 hasOpenAccess W3175339056 @default.
- W3175339056 hasPrimaryLocation W31753390561 @default.
- W3175339056 hasRelatedWork W2088241642 @default.
- W3175339056 hasRelatedWork W3015181664 @default.
- W3175339056 hasRelatedWork W3036273842 @default.
- W3175339056 hasRelatedWork W3134842041 @default.
- W3175339056 hasRelatedWork W3135627600 @default.
- W3175339056 hasRelatedWork W4243124808 @default.
- W3175339056 hasRelatedWork W4283697347 @default.
- W3175339056 hasRelatedWork W4295309597 @default.