Matches in SemOpenAlex for { <https://semopenalex.org/work/W3175339173> ?p ?o ?g. }
- W3175339173 endingPage "e27344" @default.
- W3175339173 startingPage "e27344" @default.
- W3175339173 abstract "In epidemiological studies, finding the best subset of factors is challenging when the number of explanatory variables is large.Our study had two aims. First, we aimed to identify essential depression-associated factors using the extreme gradient boosting (XGBoost) machine learning algorithm from big survey data (the Korea National Health and Nutrition Examination Survey, 2012-2016). Second, we aimed to achieve a comprehensive understanding of multifactorial features in depression using network analysis.An XGBoost model was trained and tested to classify current depression and no lifetime depression for a data set of 120 variables for 12,596 cases. The optimal XGBoost hyperparameters were set by an automated machine learning tool (TPOT), and a high-performance sparse model was obtained by feature selection using the feature importance value of XGBoost. We performed statistical tests on the model and nonmodel factors using survey-weighted multiple logistic regression and drew a correlation network among factors. We also adopted statistical tests for the confounder or interaction effect of selected risk factors when it was suspected on the network.The XGBoost-derived depression model consisted of 18 factors with an area under the weighted receiver operating characteristic curve of 0.86. Two nonmodel factors could be found using the model factors, and the factors were classified into direct (P<.05) and indirect (P≥.05), according to the statistical significance of the association with depression. Perceived stress and asthma were the most remarkable risk factors, and urine specific gravity was a novel protective factor. The depression-factor network showed clusters of socioeconomic status and quality of life factors and suggested that educational level and sex might be predisposing factors. Indirect factors (eg, diabetes, hypercholesterolemia, and smoking) were involved in confounding or interaction effects of direct factors. Triglyceride level was a confounder of hypercholesterolemia and diabetes, smoking had a significant risk in females, and weight gain was associated with depression involving diabetes.XGBoost and network analysis were useful to discover depression-related factors and their relationships and can be applied to epidemiological studies using big survey data." @default.
- W3175339173 created "2021-07-05" @default.
- W3175339173 creator A5006527008 @default.
- W3175339173 creator A5006816656 @default.
- W3175339173 creator A5018633558 @default.
- W3175339173 creator A5042139010 @default.
- W3175339173 creator A5090987872 @default.
- W3175339173 date "2021-06-24" @default.
- W3175339173 modified "2023-09-25" @default.
- W3175339173 title "Discovery of Depression-Associated Factors From a Nationwide Population-Based Survey: Epidemiological Study Using Machine Learning and Network Analysis" @default.
- W3175339173 cites W1723129825 @default.
- W3175339173 cites W1963551867 @default.
- W3175339173 cites W2008620264 @default.
- W3175339173 cites W2011804598 @default.
- W3175339173 cites W2022266357 @default.
- W3175339173 cites W2046818084 @default.
- W3175339173 cites W2054125742 @default.
- W3175339173 cites W2082467732 @default.
- W3175339173 cites W2088834455 @default.
- W3175339173 cites W2099274262 @default.
- W3175339173 cites W2128023455 @default.
- W3175339173 cites W2130276206 @default.
- W3175339173 cites W2131735754 @default.
- W3175339173 cites W2144278613 @default.
- W3175339173 cites W2156104108 @default.
- W3175339173 cites W2162896254 @default.
- W3175339173 cites W2188378291 @default.
- W3175339173 cites W2346391128 @default.
- W3175339173 cites W2429047191 @default.
- W3175339173 cites W2587236462 @default.
- W3175339173 cites W2619260776 @default.
- W3175339173 cites W2778429268 @default.
- W3175339173 cites W2795385600 @default.
- W3175339173 cites W2905665749 @default.
- W3175339173 cites W2947123069 @default.
- W3175339173 cites W2984882139 @default.
- W3175339173 cites W2999615587 @default.
- W3175339173 cites W3003041181 @default.
- W3175339173 cites W3007585030 @default.
- W3175339173 cites W3023110060 @default.
- W3175339173 cites W3026620303 @default.
- W3175339173 cites W3081844248 @default.
- W3175339173 cites W3102476541 @default.
- W3175339173 cites W4248462614 @default.
- W3175339173 cites W4254617165 @default.
- W3175339173 cites W4254687493 @default.
- W3175339173 doi "https://doi.org/10.2196/27344" @default.
- W3175339173 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8277318" @default.
- W3175339173 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34184998" @default.
- W3175339173 hasPublicationYear "2021" @default.
- W3175339173 type Work @default.
- W3175339173 sameAs 3175339173 @default.
- W3175339173 citedByCount "9" @default.
- W3175339173 countsByYear W31753391732021 @default.
- W3175339173 countsByYear W31753391732022 @default.
- W3175339173 countsByYear W31753391732023 @default.
- W3175339173 crossrefType "journal-article" @default.
- W3175339173 hasAuthorship W3175339173A5006527008 @default.
- W3175339173 hasAuthorship W3175339173A5006816656 @default.
- W3175339173 hasAuthorship W3175339173A5018633558 @default.
- W3175339173 hasAuthorship W3175339173A5042139010 @default.
- W3175339173 hasAuthorship W3175339173A5090987872 @default.
- W3175339173 hasBestOaLocation W31753391731 @default.
- W3175339173 hasConcept C105795698 @default.
- W3175339173 hasConcept C119857082 @default.
- W3175339173 hasConcept C139719470 @default.
- W3175339173 hasConcept C148483581 @default.
- W3175339173 hasConcept C151956035 @default.
- W3175339173 hasConcept C152877465 @default.
- W3175339173 hasConcept C154945302 @default.
- W3175339173 hasConcept C162324750 @default.
- W3175339173 hasConcept C189285262 @default.
- W3175339173 hasConcept C2776867660 @default.
- W3175339173 hasConcept C2908647359 @default.
- W3175339173 hasConcept C33923547 @default.
- W3175339173 hasConcept C41008148 @default.
- W3175339173 hasConcept C71924100 @default.
- W3175339173 hasConcept C99454951 @default.
- W3175339173 hasConceptScore W3175339173C105795698 @default.
- W3175339173 hasConceptScore W3175339173C119857082 @default.
- W3175339173 hasConceptScore W3175339173C139719470 @default.
- W3175339173 hasConceptScore W3175339173C148483581 @default.
- W3175339173 hasConceptScore W3175339173C151956035 @default.
- W3175339173 hasConceptScore W3175339173C152877465 @default.
- W3175339173 hasConceptScore W3175339173C154945302 @default.
- W3175339173 hasConceptScore W3175339173C162324750 @default.
- W3175339173 hasConceptScore W3175339173C189285262 @default.
- W3175339173 hasConceptScore W3175339173C2776867660 @default.
- W3175339173 hasConceptScore W3175339173C2908647359 @default.
- W3175339173 hasConceptScore W3175339173C33923547 @default.
- W3175339173 hasConceptScore W3175339173C41008148 @default.
- W3175339173 hasConceptScore W3175339173C71924100 @default.
- W3175339173 hasConceptScore W3175339173C99454951 @default.
- W3175339173 hasIssue "6" @default.
- W3175339173 hasLocation W31753391731 @default.
- W3175339173 hasLocation W31753391732 @default.
- W3175339173 hasLocation W31753391733 @default.
- W3175339173 hasLocation W31753391734 @default.