Matches in SemOpenAlex for { <https://semopenalex.org/work/W3175392337> ?p ?o ?g. }
- W3175392337 endingPage "2485" @default.
- W3175392337 startingPage "2485" @default.
- W3175392337 abstract "Maintenance of roadside ditches is important to avoid localized flooding and premature failure of pavements. Scheduling effective preventative maintenance requires a reasonably detailed mapping of the ditch profile to identify areas in need of excavation to remove long-term sediment accumulation. This study utilizes high-resolution, high-quality point clouds collected by mobile LiDAR mapping systems (MLMS) for mapping roadside ditches and performing hydrological analyses. The performance of alternative MLMS units, including an unmanned aerial vehicle, an unmanned ground vehicle, a portable backpack system along with its vehicle-mounted version, a medium-grade wheel-based system, and a high-grade wheel-based system, is evaluated. Point clouds from all the MLMS units are in agreement within the ±3 cm range for solid surfaces and ±7 cm range for vegetated areas along the vertical direction. The portable backpack system that could be carried by a surveyor or mounted on a vehicle is found to be the most cost-effective method for mapping roadside ditches, followed by the medium-grade wheel-based system. Furthermore, a framework for ditch line characterization is proposed and tested using datasets acquired by the medium-grade wheel-based and vehicle-mounted portable systems over a state highway. An existing ground-filtering approach—cloth simulation—is modified to handle variations in point density of mobile LiDAR data. Hydrological analyses, including flow direction and flow accumulation, are applied to extract the drainage network from the digital terrain model (DTM). Cross-sectional/longitudinal profiles of the ditch are automatically extracted from the LiDAR data and visualized in 3D point clouds and 2D images. The slope derived from the LiDAR data turned out to be very close to the highway cross slope design standards of 2% on driving lanes, 4% on shoulders, and a 6-by-1 slope for ditch lines." @default.
- W3175392337 created "2021-07-05" @default.
- W3175392337 creator A5010621410 @default.
- W3175392337 creator A5041513344 @default.
- W3175392337 creator A5042408460 @default.
- W3175392337 creator A5051952251 @default.
- W3175392337 date "2021-06-25" @default.
- W3175392337 modified "2023-09-26" @default.
- W3175392337 title "Comparative Analysis of Different Mobile LiDAR Mapping Systems for Ditch Line Characterization" @default.
- W3175392337 cites W1508143154 @default.
- W3175392337 cites W1906457884 @default.
- W3175392337 cites W1968731961 @default.
- W3175392337 cites W1972014133 @default.
- W3175392337 cites W1975809100 @default.
- W3175392337 cites W1976424780 @default.
- W3175392337 cites W1984009123 @default.
- W3175392337 cites W2004639900 @default.
- W3175392337 cites W2031660327 @default.
- W3175392337 cites W2042976030 @default.
- W3175392337 cites W2045388733 @default.
- W3175392337 cites W2062526721 @default.
- W3175392337 cites W2069605053 @default.
- W3175392337 cites W2073597338 @default.
- W3175392337 cites W2074903611 @default.
- W3175392337 cites W2085261163 @default.
- W3175392337 cites W2148274051 @default.
- W3175392337 cites W2148747270 @default.
- W3175392337 cites W2152370058 @default.
- W3175392337 cites W2170876537 @default.
- W3175392337 cites W2283413936 @default.
- W3175392337 cites W2436494909 @default.
- W3175392337 cites W2439667875 @default.
- W3175392337 cites W2468088575 @default.
- W3175392337 cites W2471837237 @default.
- W3175392337 cites W2625960439 @default.
- W3175392337 cites W2756814280 @default.
- W3175392337 cites W2782407473 @default.
- W3175392337 cites W2782428144 @default.
- W3175392337 cites W2789888157 @default.
- W3175392337 cites W2798379399 @default.
- W3175392337 cites W2800716596 @default.
- W3175392337 cites W2895335941 @default.
- W3175392337 cites W2898630232 @default.
- W3175392337 cites W2902218628 @default.
- W3175392337 cites W2912951957 @default.
- W3175392337 cites W2934511550 @default.
- W3175392337 cites W2940652081 @default.
- W3175392337 cites W2952116188 @default.
- W3175392337 cites W2966702270 @default.
- W3175392337 cites W3020206414 @default.
- W3175392337 cites W3045892765 @default.
- W3175392337 cites W3048175078 @default.
- W3175392337 cites W3092406386 @default.
- W3175392337 cites W3118669689 @default.
- W3175392337 cites W3124054352 @default.
- W3175392337 cites W3129238985 @default.
- W3175392337 cites W3204597320 @default.
- W3175392337 cites W2754358088 @default.
- W3175392337 doi "https://doi.org/10.3390/rs13132485" @default.
- W3175392337 hasPublicationYear "2021" @default.
- W3175392337 type Work @default.
- W3175392337 sameAs 3175392337 @default.
- W3175392337 citedByCount "14" @default.
- W3175392337 countsByYear W31753923372021 @default.
- W3175392337 countsByYear W31753923372022 @default.
- W3175392337 countsByYear W31753923372023 @default.
- W3175392337 crossrefType "journal-article" @default.
- W3175392337 hasAuthorship W3175392337A5010621410 @default.
- W3175392337 hasAuthorship W3175392337A5041513344 @default.
- W3175392337 hasAuthorship W3175392337A5042408460 @default.
- W3175392337 hasAuthorship W3175392337A5051952251 @default.
- W3175392337 hasBestOaLocation W31753923371 @default.
- W3175392337 hasConcept C127313418 @default.
- W3175392337 hasConcept C127413603 @default.
- W3175392337 hasConcept C131979681 @default.
- W3175392337 hasConcept C154945302 @default.
- W3175392337 hasConcept C161840515 @default.
- W3175392337 hasConcept C181843262 @default.
- W3175392337 hasConcept C18903297 @default.
- W3175392337 hasConcept C199104240 @default.
- W3175392337 hasConcept C205649164 @default.
- W3175392337 hasConcept C2776821279 @default.
- W3175392337 hasConcept C2778572946 @default.
- W3175392337 hasConcept C39432304 @default.
- W3175392337 hasConcept C41008148 @default.
- W3175392337 hasConcept C51399673 @default.
- W3175392337 hasConcept C58640448 @default.
- W3175392337 hasConcept C62649853 @default.
- W3175392337 hasConcept C86803240 @default.
- W3175392337 hasConceptScore W3175392337C127313418 @default.
- W3175392337 hasConceptScore W3175392337C127413603 @default.
- W3175392337 hasConceptScore W3175392337C131979681 @default.
- W3175392337 hasConceptScore W3175392337C154945302 @default.
- W3175392337 hasConceptScore W3175392337C161840515 @default.
- W3175392337 hasConceptScore W3175392337C181843262 @default.
- W3175392337 hasConceptScore W3175392337C18903297 @default.
- W3175392337 hasConceptScore W3175392337C199104240 @default.
- W3175392337 hasConceptScore W3175392337C205649164 @default.