Matches in SemOpenAlex for { <https://semopenalex.org/work/W3175459006> ?p ?o ?g. }
- W3175459006 endingPage "101406" @default.
- W3175459006 startingPage "101406" @default.
- W3175459006 abstract "The Carbon Navigation System (CNS) showcases a new methodology to model specific carbon-efficient bioenergy with carbon capture and storage (BECCS) supply chains at high spatial resolution. The CNS model is capable of searching and routing for a precise amount of biomass to a chosen location, route captured CO2 for offshore geological storage and direct energy output to end-users. The CNS model is multi-modal between trucks, rails, shipping and CO2-compatible pipelines to ensure carbon-optimal routings. The model’s operation and outputs are demonstrated through a case study approach using an illustrative sugar beet derived bioethanol BECCS supply chain. The CNS model calculates carbon performance heatmaps for the case study supply chain, revealing the carbon-optimal position of the BECCS facility. A BECCS supply chain notation was also created, which allowed for the generation of classification maps that present the BECCS supply chain type for any given area. The CNS model can model any BECCS supply chain or be repurposed to model any other supply chain. The methodology presented in this analysis provides a useful heuristic that can aid the carbon-efficient deployment of BECCS in the UK and has the potential to be replicated for other countries or calculate carbon-efficient trans-national BECCS supply chains." @default.
- W3175459006 created "2021-07-05" @default.
- W3175459006 creator A5002652920 @default.
- W3175459006 creator A5040421024 @default.
- W3175459006 creator A5045903877 @default.
- W3175459006 creator A5052404379 @default.
- W3175459006 date "2021-10-01" @default.
- W3175459006 modified "2023-10-15" @default.
- W3175459006 title "Carbon optimal bioenergy with carbon capture and storage supply chain modelling: How far is too far?" @default.
- W3175459006 cites W1101151460 @default.
- W3175459006 cites W1977686617 @default.
- W3175459006 cites W1984945498 @default.
- W3175459006 cites W1988383146 @default.
- W3175459006 cites W1995920329 @default.
- W3175459006 cites W2007174748 @default.
- W3175459006 cites W2047014395 @default.
- W3175459006 cites W2052784937 @default.
- W3175459006 cites W2053243120 @default.
- W3175459006 cites W2061391509 @default.
- W3175459006 cites W2067617339 @default.
- W3175459006 cites W2091091222 @default.
- W3175459006 cites W2105353001 @default.
- W3175459006 cites W2111677512 @default.
- W3175459006 cites W2135147295 @default.
- W3175459006 cites W2138024009 @default.
- W3175459006 cites W2223970358 @default.
- W3175459006 cites W2224109863 @default.
- W3175459006 cites W2238828641 @default.
- W3175459006 cites W2240620353 @default.
- W3175459006 cites W2495624043 @default.
- W3175459006 cites W2509211279 @default.
- W3175459006 cites W2512275082 @default.
- W3175459006 cites W2512880873 @default.
- W3175459006 cites W2555581816 @default.
- W3175459006 cites W2592886253 @default.
- W3175459006 cites W2604560350 @default.
- W3175459006 cites W2745807343 @default.
- W3175459006 cites W2751688901 @default.
- W3175459006 cites W2751814117 @default.
- W3175459006 cites W2755131844 @default.
- W3175459006 cites W2765455090 @default.
- W3175459006 cites W2789172723 @default.
- W3175459006 cites W2790418528 @default.
- W3175459006 cites W2794140740 @default.
- W3175459006 cites W2795190010 @default.
- W3175459006 cites W2800593290 @default.
- W3175459006 cites W2802129680 @default.
- W3175459006 cites W2808380230 @default.
- W3175459006 cites W2809010055 @default.
- W3175459006 cites W2883607246 @default.
- W3175459006 cites W2885373889 @default.
- W3175459006 cites W2889713199 @default.
- W3175459006 cites W2907916995 @default.
- W3175459006 cites W2909320214 @default.
- W3175459006 cites W2921271613 @default.
- W3175459006 cites W2921271620 @default.
- W3175459006 cites W2924034259 @default.
- W3175459006 cites W2943172779 @default.
- W3175459006 cites W2944050950 @default.
- W3175459006 cites W2945138318 @default.
- W3175459006 cites W2967958786 @default.
- W3175459006 cites W2995383806 @default.
- W3175459006 cites W2998276242 @default.
- W3175459006 cites W3001206837 @default.
- W3175459006 cites W3021763615 @default.
- W3175459006 cites W3048639636 @default.
- W3175459006 cites W3131350358 @default.
- W3175459006 cites W4234649795 @default.
- W3175459006 doi "https://doi.org/10.1016/j.seta.2021.101406" @default.
- W3175459006 hasPublicationYear "2021" @default.
- W3175459006 type Work @default.
- W3175459006 sameAs 3175459006 @default.
- W3175459006 citedByCount "5" @default.
- W3175459006 countsByYear W31754590062021 @default.
- W3175459006 countsByYear W31754590062022 @default.
- W3175459006 countsByYear W31754590062023 @default.
- W3175459006 crossrefType "journal-article" @default.
- W3175459006 hasAuthorship W3175459006A5002652920 @default.
- W3175459006 hasAuthorship W3175459006A5040421024 @default.
- W3175459006 hasAuthorship W3175459006A5045903877 @default.
- W3175459006 hasAuthorship W3175459006A5052404379 @default.
- W3175459006 hasBestOaLocation W31754590061 @default.
- W3175459006 hasConcept C108713360 @default.
- W3175459006 hasConcept C115540264 @default.
- W3175459006 hasConcept C127413603 @default.
- W3175459006 hasConcept C144133560 @default.
- W3175459006 hasConcept C156380964 @default.
- W3175459006 hasConcept C162853370 @default.
- W3175459006 hasConcept C16921312 @default.
- W3175459006 hasConcept C18903297 @default.
- W3175459006 hasConcept C39432304 @default.
- W3175459006 hasConcept C41008148 @default.
- W3175459006 hasConcept C47737302 @default.
- W3175459006 hasConcept C509746633 @default.
- W3175459006 hasConcept C53991642 @default.
- W3175459006 hasConcept C548081761 @default.
- W3175459006 hasConcept C86803240 @default.
- W3175459006 hasConceptScore W3175459006C108713360 @default.