Matches in SemOpenAlex for { <https://semopenalex.org/work/W3175492893> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W3175492893 endingPage "91685" @default.
- W3175492893 startingPage "91670" @default.
- W3175492893 abstract "Arabic documents are massively rising due to numerous contents utilized in websites, social media, and news articles. The classification of such documents in labelled categories is a significant and vital task that deserves more attention. Arabic Text Classification is an emerging research theme in Arabic Natural Language Processing. Recently, Deep Neural Network approaches have successfully been applied to many text classification problems, especially in English Text Classification. Convolutional Neural Network (CNN) is one of the best popular models. However, CNN is not highly applied in Arabic Text Classification. In addition, the recent studies did not achieve a high classification accuracy due to parameter setting issue. To overcome this limitation, a new hybrid classification model for Arabic Text is developed. This paper proposes Genetic Algorithms based Convolutional Neural Network for Arabic Text Classification. Genetic Algorithm is used to optimize the CNN parameters. The proposed model is tested using two large datasets and compared with the state-of-the art studies. The results showed that the classification accuracy achieved an improvement of 4 to 5%." @default.
- W3175492893 created "2021-07-05" @default.
- W3175492893 creator A5066540810 @default.
- W3175492893 creator A5084945522 @default.
- W3175492893 date "2021-01-01" @default.
- W3175492893 modified "2023-10-10" @default.
- W3175492893 title "Arabic Text Classification Using Convolutional Neural Network and Genetic Algorithms" @default.
- W3175492893 cites W11536623 @default.
- W3175492893 cites W1966443646 @default.
- W3175492893 cites W1984708705 @default.
- W3175492893 cites W2030463632 @default.
- W3175492893 cites W2037450062 @default.
- W3175492893 cites W2047094503 @default.
- W3175492893 cites W2113391436 @default.
- W3175492893 cites W2250539671 @default.
- W3175492893 cites W2251137535 @default.
- W3175492893 cites W2293983223 @default.
- W3175492893 cites W2516323949 @default.
- W3175492893 cites W2735552604 @default.
- W3175492893 cites W2769317996 @default.
- W3175492893 cites W2807776514 @default.
- W3175492893 cites W2894812750 @default.
- W3175492893 cites W2907973054 @default.
- W3175492893 cites W2919115771 @default.
- W3175492893 cites W2956281465 @default.
- W3175492893 cites W2963729324 @default.
- W3175492893 cites W3003603507 @default.
- W3175492893 cites W3005922161 @default.
- W3175492893 cites W3024091087 @default.
- W3175492893 cites W3033498093 @default.
- W3175492893 cites W3043161732 @default.
- W3175492893 cites W3080820686 @default.
- W3175492893 cites W3105772961 @default.
- W3175492893 cites W3119429736 @default.
- W3175492893 cites W3120443952 @default.
- W3175492893 cites W4245838815 @default.
- W3175492893 doi "https://doi.org/10.1109/access.2021.3091376" @default.
- W3175492893 hasPublicationYear "2021" @default.
- W3175492893 type Work @default.
- W3175492893 sameAs 3175492893 @default.
- W3175492893 citedByCount "20" @default.
- W3175492893 countsByYear W31754928932021 @default.
- W3175492893 countsByYear W31754928932022 @default.
- W3175492893 countsByYear W31754928932023 @default.
- W3175492893 crossrefType "journal-article" @default.
- W3175492893 hasAuthorship W3175492893A5066540810 @default.
- W3175492893 hasAuthorship W3175492893A5084945522 @default.
- W3175492893 hasBestOaLocation W31754928931 @default.
- W3175492893 hasConcept C119857082 @default.
- W3175492893 hasConcept C138885662 @default.
- W3175492893 hasConcept C153180895 @default.
- W3175492893 hasConcept C154945302 @default.
- W3175492893 hasConcept C162324750 @default.
- W3175492893 hasConcept C187736073 @default.
- W3175492893 hasConcept C204321447 @default.
- W3175492893 hasConcept C2780451532 @default.
- W3175492893 hasConcept C41008148 @default.
- W3175492893 hasConcept C41895202 @default.
- W3175492893 hasConcept C50644808 @default.
- W3175492893 hasConcept C81363708 @default.
- W3175492893 hasConcept C8880873 @default.
- W3175492893 hasConcept C96455323 @default.
- W3175492893 hasConceptScore W3175492893C119857082 @default.
- W3175492893 hasConceptScore W3175492893C138885662 @default.
- W3175492893 hasConceptScore W3175492893C153180895 @default.
- W3175492893 hasConceptScore W3175492893C154945302 @default.
- W3175492893 hasConceptScore W3175492893C162324750 @default.
- W3175492893 hasConceptScore W3175492893C187736073 @default.
- W3175492893 hasConceptScore W3175492893C204321447 @default.
- W3175492893 hasConceptScore W3175492893C2780451532 @default.
- W3175492893 hasConceptScore W3175492893C41008148 @default.
- W3175492893 hasConceptScore W3175492893C41895202 @default.
- W3175492893 hasConceptScore W3175492893C50644808 @default.
- W3175492893 hasConceptScore W3175492893C81363708 @default.
- W3175492893 hasConceptScore W3175492893C8880873 @default.
- W3175492893 hasConceptScore W3175492893C96455323 @default.
- W3175492893 hasFunder F4320327702 @default.
- W3175492893 hasLocation W31754928931 @default.
- W3175492893 hasOpenAccess W3175492893 @default.
- W3175492893 hasPrimaryLocation W31754928931 @default.
- W3175492893 hasRelatedWork W2354205711 @default.
- W3175492893 hasRelatedWork W2356583712 @default.
- W3175492893 hasRelatedWork W2360006733 @default.
- W3175492893 hasRelatedWork W2366368367 @default.
- W3175492893 hasRelatedWork W2366584243 @default.
- W3175492893 hasRelatedWork W2372415543 @default.
- W3175492893 hasRelatedWork W2376563992 @default.
- W3175492893 hasRelatedWork W2377292223 @default.
- W3175492893 hasRelatedWork W2808717917 @default.
- W3175492893 hasRelatedWork W4304590249 @default.
- W3175492893 hasVolume "9" @default.
- W3175492893 isParatext "false" @default.
- W3175492893 isRetracted "false" @default.
- W3175492893 magId "3175492893" @default.
- W3175492893 workType "article" @default.