Matches in SemOpenAlex for { <https://semopenalex.org/work/W3175660636> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W3175660636 abstract "With an increase in population, there is an exponential increase in the amount of waste produced. This waste contains a high percentage of plastic that can be recycled. It is therefore necessary to classify and separate different types of waste. In order to minimize the environmental impact of improper waste disposal, we propose a robotic automation system based on deep learning techniques to help ensure proper waste separation in the recycling categories. The ResNet-50 has been used to classify the waste. The model was trained in a TrashNet dataset and a local image collection containing approximately 5,326 images of four different categories of waste. The experimental accuracy was 98.81%. We have developed a Smart Bin with computer vision and IoT that can separate waste automatically. The Pi camera captures multiple images of the waste when the motion sensor is triggered, and then sends the images to the Deep Learning model, which then returns the output (PET, plastic, metal, and trash) to the Raspberry Pi. Based on the output generated, the waste is automatically moved to its respective bin using a motorized sliding tray to the appropriate container. A smart university social enterprise engages students in earning points by sorting out the amount of waste to be used for university redemption." @default.
- W3175660636 created "2021-07-05" @default.
- W3175660636 creator A5009572599 @default.
- W3175660636 creator A5056416237 @default.
- W3175660636 creator A5069617571 @default.
- W3175660636 date "2021-05-19" @default.
- W3175660636 modified "2023-10-18" @default.
- W3175660636 title "Designing of IoT-based Smart Waste Sorting System with Image-based Deep Learning Applications" @default.
- W3175660636 cites W2756788323 @default.
- W3175660636 cites W2805515763 @default.
- W3175660636 cites W2897042087 @default.
- W3175660636 cites W2914156708 @default.
- W3175660636 cites W2940921677 @default.
- W3175660636 cites W2947421679 @default.
- W3175660636 cites W2967357336 @default.
- W3175660636 cites W3080909375 @default.
- W3175660636 cites W3083077635 @default.
- W3175660636 cites W3084731547 @default.
- W3175660636 doi "https://doi.org/10.1109/ecti-con51831.2021.9454826" @default.
- W3175660636 hasPublicationYear "2021" @default.
- W3175660636 type Work @default.
- W3175660636 sameAs 3175660636 @default.
- W3175660636 citedByCount "5" @default.
- W3175660636 countsByYear W31756606362022 @default.
- W3175660636 countsByYear W31756606362023 @default.
- W3175660636 crossrefType "proceedings-article" @default.
- W3175660636 hasAuthorship W3175660636A5009572599 @default.
- W3175660636 hasAuthorship W3175660636A5056416237 @default.
- W3175660636 hasAuthorship W3175660636A5069617571 @default.
- W3175660636 hasConcept C108583219 @default.
- W3175660636 hasConcept C111696304 @default.
- W3175660636 hasConcept C11413529 @default.
- W3175660636 hasConcept C115901376 @default.
- W3175660636 hasConcept C127413603 @default.
- W3175660636 hasConcept C144024400 @default.
- W3175660636 hasConcept C149923435 @default.
- W3175660636 hasConcept C154945302 @default.
- W3175660636 hasConcept C156273044 @default.
- W3175660636 hasConcept C199360897 @default.
- W3175660636 hasConcept C2781018962 @default.
- W3175660636 hasConcept C2908647359 @default.
- W3175660636 hasConcept C2993109238 @default.
- W3175660636 hasConcept C31972630 @default.
- W3175660636 hasConcept C41008148 @default.
- W3175660636 hasConcept C44154836 @default.
- W3175660636 hasConcept C521786372 @default.
- W3175660636 hasConcept C548081761 @default.
- W3175660636 hasConcept C75779659 @default.
- W3175660636 hasConcept C78519656 @default.
- W3175660636 hasConceptScore W3175660636C108583219 @default.
- W3175660636 hasConceptScore W3175660636C111696304 @default.
- W3175660636 hasConceptScore W3175660636C11413529 @default.
- W3175660636 hasConceptScore W3175660636C115901376 @default.
- W3175660636 hasConceptScore W3175660636C127413603 @default.
- W3175660636 hasConceptScore W3175660636C144024400 @default.
- W3175660636 hasConceptScore W3175660636C149923435 @default.
- W3175660636 hasConceptScore W3175660636C154945302 @default.
- W3175660636 hasConceptScore W3175660636C156273044 @default.
- W3175660636 hasConceptScore W3175660636C199360897 @default.
- W3175660636 hasConceptScore W3175660636C2781018962 @default.
- W3175660636 hasConceptScore W3175660636C2908647359 @default.
- W3175660636 hasConceptScore W3175660636C2993109238 @default.
- W3175660636 hasConceptScore W3175660636C31972630 @default.
- W3175660636 hasConceptScore W3175660636C41008148 @default.
- W3175660636 hasConceptScore W3175660636C44154836 @default.
- W3175660636 hasConceptScore W3175660636C521786372 @default.
- W3175660636 hasConceptScore W3175660636C548081761 @default.
- W3175660636 hasConceptScore W3175660636C75779659 @default.
- W3175660636 hasConceptScore W3175660636C78519656 @default.
- W3175660636 hasFunder F4320322722 @default.
- W3175660636 hasLocation W31756606361 @default.
- W3175660636 hasOpenAccess W3175660636 @default.
- W3175660636 hasPrimaryLocation W31756606361 @default.
- W3175660636 hasRelatedWork W1557739621 @default.
- W3175660636 hasRelatedWork W1616588898 @default.
- W3175660636 hasRelatedWork W2107701374 @default.
- W3175660636 hasRelatedWork W2183416055 @default.
- W3175660636 hasRelatedWork W2314790863 @default.
- W3175660636 hasRelatedWork W2950072893 @default.
- W3175660636 hasRelatedWork W3194187224 @default.
- W3175660636 hasRelatedWork W4205721577 @default.
- W3175660636 hasRelatedWork W4249504934 @default.
- W3175660636 hasRelatedWork W4367834288 @default.
- W3175660636 isParatext "false" @default.
- W3175660636 isRetracted "false" @default.
- W3175660636 magId "3175660636" @default.
- W3175660636 workType "article" @default.