Matches in SemOpenAlex for { <https://semopenalex.org/work/W3175786839> ?p ?o ?g. }
- W3175786839 endingPage "728" @default.
- W3175786839 startingPage "718" @default.
- W3175786839 abstract "Predicting the interaction between a compound and a target is crucial for rapid drug repurposing. Deep learning has been successfully applied in drug-target affinity (DTA)problem. However, previous deep learning-based methods ignore modeling the direct interactions between drug and protein residues. This would lead to inaccurate learning of target representation which may change due to the drug binding effects. In addition, previous DTA methods learn protein representation solely based on a small number of protein sequences in DTA datasets while neglecting the use of proteins outside of the DTA datasets. We propose GEFA (Graph Early Fusion Affinity), a novel graph-in-graph neural network with attention mechanism to address the changes in target representation because of the binding effects. Specifically, a drug is modeled as a graph of atoms, which then serves as a node in a larger graph of residues-drug complex. The resulting model is an expressive deep nested graph neural network. We also use pre-trained protein representation powered by the recent effort of learning contextualized protein representation. The experiments are conducted under different settings to evaluate scenarios such as novel drugs or targets. The results demonstrate the effectiveness of the pre-trained protein embedding and the advantages our GEFA in modeling the nested graph for drug-target interaction." @default.
- W3175786839 created "2021-07-05" @default.
- W3175786839 creator A5051630302 @default.
- W3175786839 creator A5079045166 @default.
- W3175786839 creator A5081060402 @default.
- W3175786839 creator A5085471517 @default.
- W3175786839 date "2022-03-01" @default.
- W3175786839 modified "2023-10-10" @default.
- W3175786839 title "GEFA: Early Fusion Approach in Drug-Target Affinity Prediction" @default.
- W3175786839 cites W1135792216 @default.
- W3175786839 cites W1737223868 @default.
- W3175786839 cites W1930228151 @default.
- W3175786839 cites W1970148391 @default.
- W3175786839 cites W1972987731 @default.
- W3175786839 cites W1974645077 @default.
- W3175786839 cites W1976499671 @default.
- W3175786839 cites W1982945330 @default.
- W3175786839 cites W1986240377 @default.
- W3175786839 cites W1992407562 @default.
- W3175786839 cites W1993046136 @default.
- W3175786839 cites W1996546582 @default.
- W3175786839 cites W2004910511 @default.
- W3175786839 cites W2019707847 @default.
- W3175786839 cites W2036906022 @default.
- W3175786839 cites W2041729187 @default.
- W3175786839 cites W2054725011 @default.
- W3175786839 cites W2076604395 @default.
- W3175786839 cites W2086286404 @default.
- W3175786839 cites W2092285329 @default.
- W3175786839 cites W2116494521 @default.
- W3175786839 cites W2137632714 @default.
- W3175786839 cites W2155157373 @default.
- W3175786839 cites W2171234651 @default.
- W3175786839 cites W2177411254 @default.
- W3175786839 cites W2194775991 @default.
- W3175786839 cites W2204695023 @default.
- W3175786839 cites W2259538443 @default.
- W3175786839 cites W2605952223 @default.
- W3175786839 cites W2744129621 @default.
- W3175786839 cites W2781821160 @default.
- W3175786839 cites W2785947426 @default.
- W3175786839 cites W2794875394 @default.
- W3175786839 cites W2801253218 @default.
- W3175786839 cites W2808199968 @default.
- W3175786839 cites W2820941669 @default.
- W3175786839 cites W2887766329 @default.
- W3175786839 cites W2896002881 @default.
- W3175786839 cites W2899070097 @default.
- W3175786839 cites W2949867299 @default.
- W3175786839 cites W2950334474 @default.
- W3175786839 cites W2978484973 @default.
- W3175786839 cites W2989848927 @default.
- W3175786839 cites W2990717563 @default.
- W3175786839 cites W2991281491 @default.
- W3175786839 cites W2999044305 @default.
- W3175786839 cites W3005769002 @default.
- W3175786839 cites W3023371261 @default.
- W3175786839 cites W3032123378 @default.
- W3175786839 cites W3034513622 @default.
- W3175786839 cites W3096561213 @default.
- W3175786839 cites W3136918052 @default.
- W3175786839 cites W4241295291 @default.
- W3175786839 doi "https://doi.org/10.1109/tcbb.2021.3094217" @default.
- W3175786839 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34197324" @default.
- W3175786839 hasPublicationYear "2022" @default.
- W3175786839 type Work @default.
- W3175786839 sameAs 3175786839 @default.
- W3175786839 citedByCount "28" @default.
- W3175786839 countsByYear W31757868392021 @default.
- W3175786839 countsByYear W31757868392022 @default.
- W3175786839 countsByYear W31757868392023 @default.
- W3175786839 crossrefType "journal-article" @default.
- W3175786839 hasAuthorship W3175786839A5051630302 @default.
- W3175786839 hasAuthorship W3175786839A5079045166 @default.
- W3175786839 hasAuthorship W3175786839A5081060402 @default.
- W3175786839 hasAuthorship W3175786839A5085471517 @default.
- W3175786839 hasBestOaLocation W31757868392 @default.
- W3175786839 hasConcept C103637391 @default.
- W3175786839 hasConcept C104317684 @default.
- W3175786839 hasConcept C119857082 @default.
- W3175786839 hasConcept C132525143 @default.
- W3175786839 hasConcept C154945302 @default.
- W3175786839 hasConcept C17744445 @default.
- W3175786839 hasConcept C185592680 @default.
- W3175786839 hasConcept C199539241 @default.
- W3175786839 hasConcept C2776359362 @default.
- W3175786839 hasConcept C2780035454 @default.
- W3175786839 hasConcept C2989108626 @default.
- W3175786839 hasConcept C41008148 @default.
- W3175786839 hasConcept C55105296 @default.
- W3175786839 hasConcept C55493867 @default.
- W3175786839 hasConcept C59404180 @default.
- W3175786839 hasConcept C80444323 @default.
- W3175786839 hasConcept C86803240 @default.
- W3175786839 hasConcept C94625758 @default.
- W3175786839 hasConcept C98274493 @default.
- W3175786839 hasConceptScore W3175786839C103637391 @default.
- W3175786839 hasConceptScore W3175786839C104317684 @default.