Matches in SemOpenAlex for { <https://semopenalex.org/work/W3175926467> ?p ?o ?g. }
- W3175926467 abstract "Hypergraphs are used to model higher-order interactions amongst agents and there exist many practically relevant instances of hypergraph datasets. To enable efficient processing of hypergraph-structured data, several hypergraph neural network platforms have been proposed for learning hypergraph properties and structure, with a special focus on node classification. However, almost all existing methods use heuristic propagation rules and offer suboptimal performance on many datasets. We propose AllSet, a new hypergraph neural network paradigm that represents a highly general framework for (hyper)graph neural networks and for the first time implements hypergraph neural network layers as compositions of two multiset functions that can be efficiently learned for each task and each dataset. Furthermore, AllSet draws on new connections between hypergraph neural networks and recent advances in deep learning of multiset functions. In particular, the proposed architecture utilizes Deep Sets and Set Transformer architectures that allow for significant modeling flexibility and offer high expressive power. To evaluate the performance of AllSet, we conduct the most extensive experiments to date involving ten known benchmarking datasets and three newly curated datasets that represent significant challenges for hypergraph node classification. The results demonstrate that AllSet has the unique ability to consistently either match or outperform all other hypergraph neural networks across the tested datasets. Our implementation and dataset will be released upon acceptance." @default.
- W3175926467 created "2021-07-05" @default.
- W3175926467 creator A5034104547 @default.
- W3175926467 creator A5043074622 @default.
- W3175926467 creator A5063325723 @default.
- W3175926467 creator A5084947882 @default.
- W3175926467 date "2021-06-24" @default.
- W3175926467 modified "2023-09-27" @default.
- W3175926467 title "You are AllSet: A Multiset Function Framework for Hypergraph Neural Networks." @default.
- W3175926467 cites W1644641054 @default.
- W3175926467 cites W1854214752 @default.
- W3175926467 cites W1920022804 @default.
- W3175926467 cites W1929316339 @default.
- W3175926467 cites W1944315015 @default.
- W3175926467 cites W1979104937 @default.
- W3175926467 cites W2003079119 @default.
- W3175926467 cites W2021122545 @default.
- W3175926467 cites W2069153192 @default.
- W3175926467 cites W2082167570 @default.
- W3175926467 cites W2102306708 @default.
- W3175926467 cites W2113722075 @default.
- W3175926467 cites W2136504847 @default.
- W3175926467 cites W2142498761 @default.
- W3175926467 cites W2158579916 @default.
- W3175926467 cites W2170057991 @default.
- W3175926467 cites W2244807774 @default.
- W3175926467 cites W2470861207 @default.
- W3175926467 cites W2558748708 @default.
- W3175926467 cites W2560609797 @default.
- W3175926467 cites W2560745921 @default.
- W3175926467 cites W2601450892 @default.
- W3175926467 cites W2606681178 @default.
- W3175926467 cites W2606780347 @default.
- W3175926467 cites W2609276162 @default.
- W3175926467 cites W2624431344 @default.
- W3175926467 cites W2753798143 @default.
- W3175926467 cites W2798352738 @default.
- W3175926467 cites W2799162093 @default.
- W3175926467 cites W2883384506 @default.
- W3175926467 cites W2892880750 @default.
- W3175926467 cites W2900763475 @default.
- W3175926467 cites W2911835695 @default.
- W3175926467 cites W2913668534 @default.
- W3175926467 cites W2918342466 @default.
- W3175926467 cites W2921204590 @default.
- W3175926467 cites W2953273646 @default.
- W3175926467 cites W2962711740 @default.
- W3175926467 cites W2962767366 @default.
- W3175926467 cites W2962908092 @default.
- W3175926467 cites W2962931054 @default.
- W3175926467 cites W2962935106 @default.
- W3175926467 cites W2963055664 @default.
- W3175926467 cites W2963309796 @default.
- W3175926467 cites W2963361089 @default.
- W3175926467 cites W2963403868 @default.
- W3175926467 cites W2963528347 @default.
- W3175926467 cites W2963686193 @default.
- W3175926467 cites W2963782635 @default.
- W3175926467 cites W2963858333 @default.
- W3175926467 cites W2964015378 @default.
- W3175926467 cites W2964114465 @default.
- W3175926467 cites W2964124573 @default.
- W3175926467 cites W2970066309 @default.
- W3175926467 cites W2971267355 @default.
- W3175926467 cites W2973019811 @default.
- W3175926467 cites W2976476387 @default.
- W3175926467 cites W2980420456 @default.
- W3175926467 cites W2983644113 @default.
- W3175926467 cites W2994968268 @default.
- W3175926467 cites W2996028985 @default.
- W3175926467 cites W2996268457 @default.
- W3175926467 cites W3007332492 @default.
- W3175926467 cites W3022617772 @default.
- W3175926467 cites W3034127896 @default.
- W3175926467 cites W3036159734 @default.
- W3175926467 cites W3080555959 @default.
- W3175926467 cites W3085990079 @default.
- W3175926467 cites W3091815952 @default.
- W3175926467 cites W3098878668 @default.
- W3175926467 cites W3100078588 @default.
- W3175926467 cites W3102056589 @default.
- W3175926467 cites W3102154670 @default.
- W3175926467 cites W3106228791 @default.
- W3175926467 cites W3119520513 @default.
- W3175926467 cites W3120233338 @default.
- W3175926467 cites W3120740533 @default.
- W3175926467 cites W3123556301 @default.
- W3175926467 cites W3125671098 @default.
- W3175926467 cites W3128785555 @default.
- W3175926467 cites W3144257051 @default.
- W3175926467 cites W3160607464 @default.
- W3175926467 hasPublicationYear "2021" @default.
- W3175926467 type Work @default.
- W3175926467 sameAs 3175926467 @default.
- W3175926467 citedByCount "0" @default.
- W3175926467 crossrefType "posted-content" @default.
- W3175926467 hasAuthorship W3175926467A5034104547 @default.
- W3175926467 hasAuthorship W3175926467A5043074622 @default.
- W3175926467 hasAuthorship W3175926467A5063325723 @default.
- W3175926467 hasAuthorship W3175926467A5084947882 @default.