Matches in SemOpenAlex for { <https://semopenalex.org/work/W3175995003> ?p ?o ?g. }
- W3175995003 endingPage "114269" @default.
- W3175995003 startingPage "114269" @default.
- W3175995003 abstract "In this article, the triple diode model (TDM) is studied for modeling the Canadian-Solar-CS6P-240P poly-crystalline PV module, Kyocera Solar KC200GT multi-crystalline PV module, Sharp NU-(Q250W2) mono-crystalline PV module, and Pythagoras Solar Large PVGU Window mono-crystalline PV module. A novel hybrid algorithm of the marine predator’s algorithm (MPA) and slime mould algorithm (SMA) (HMPA) is proposed to enhance the MPA exploitation phase while identifying the TDM parameters. The HMPA results are compared to several recent algorithms that are equilibrium optimizer (EO), manta ray foraging optimization (MRFO), transient search optimization (TSO), jellyfish optimizer (JS), and forensic-based optimizer (FBI), besides the basic versions of MPA and SMA. For unbiased comparison, several statistical analyses and non-parametric tests are applied. The convergence curves are used to evaluate the convergence property of the proposed algorithm compared to their counterparts. The HMPA confirms its efficiency in handling the complex multi-modal and multi-dimensional optimization process of identifying the TDM parameters. HMPA provides the least root mean square error (RMSE) between the measured and estimated datasets with the least standard deviation (STD). For Canadian Solar (CS6P-240P) module, the proposed HMPA achieves the minimum RMSE of 0.00037313 with STD of 0.0030488; for Kyocera Solar (KC200GT) module, HMPA attains RMSE ± STD of 0.0033042 ± 0.0061813. For SharpNU-(Q250W2) PV module and Pythagoras Solar Large PVGU Window, HMPA outperforms the other counterparts with RMSEs ± STDs of 0.00027661 ± 0.0053002 and 0.00285 ± 0.0020075, respectively. Accordingly, the HMPA provides the slightest deviation between the estimated datasets and the experimental ones with high consistency over several independent runs. The convergence curves of the proposed HMPA affirm its fast response while handling the optimization problem of TDM. The reliability of the identified parameters is tested to emulate the PV modules’ characteristics at different irradiation levels. Furthermore, the robustness of the identified parameters is examined for integrated systems of series string and series–parallel arrays under partial shading conditions. The PV solar modules/strings/arrays characteristics confirm the accuracy of the identified parameters as the attained main points on the characteristics are defined with high quality." @default.
- W3175995003 created "2021-07-05" @default.
- W3175995003 creator A5009060342 @default.
- W3175995003 creator A5052981255 @default.
- W3175995003 creator A5058358526 @default.
- W3175995003 creator A5061573149 @default.
- W3175995003 creator A5086816810 @default.
- W3175995003 date "2021-09-01" @default.
- W3175995003 modified "2023-10-03" @default.
- W3175995003 title "A reliable approach for modeling the photovoltaic system under partial shading conditions using three diode model and hybrid marine predators-slime mould algorithm" @default.
- W3175995003 cites W1964065393 @default.
- W3175995003 cites W1975940858 @default.
- W3175995003 cites W1982169051 @default.
- W3175995003 cites W1993386311 @default.
- W3175995003 cites W2000209454 @default.
- W3175995003 cites W2059584624 @default.
- W3175995003 cites W2078402176 @default.
- W3175995003 cites W2099860820 @default.
- W3175995003 cites W2129758312 @default.
- W3175995003 cites W2131841686 @default.
- W3175995003 cites W2144578279 @default.
- W3175995003 cites W2201427656 @default.
- W3175995003 cites W2322436363 @default.
- W3175995003 cites W2436935617 @default.
- W3175995003 cites W2564669853 @default.
- W3175995003 cites W2756636418 @default.
- W3175995003 cites W2773049466 @default.
- W3175995003 cites W2811053917 @default.
- W3175995003 cites W2886241552 @default.
- W3175995003 cites W2904264140 @default.
- W3175995003 cites W2982453621 @default.
- W3175995003 cites W2985845430 @default.
- W3175995003 cites W2985975201 @default.
- W3175995003 cites W2995341211 @default.
- W3175995003 cites W2995518258 @default.
- W3175995003 cites W2996813235 @default.
- W3175995003 cites W3000161303 @default.
- W3175995003 cites W3000678747 @default.
- W3175995003 cites W3000688604 @default.
- W3175995003 cites W3002359475 @default.
- W3175995003 cites W3002653678 @default.
- W3175995003 cites W3008625690 @default.
- W3175995003 cites W3009134570 @default.
- W3175995003 cites W3011239201 @default.
- W3175995003 cites W3014974411 @default.
- W3175995003 cites W3020449703 @default.
- W3175995003 cites W3022139725 @default.
- W3175995003 cites W3023074822 @default.
- W3175995003 cites W3023194158 @default.
- W3175995003 cites W3047947392 @default.
- W3175995003 cites W3048455230 @default.
- W3175995003 cites W3086627581 @default.
- W3175995003 cites W3107835908 @default.
- W3175995003 cites W3125097119 @default.
- W3175995003 cites W3127761515 @default.
- W3175995003 cites W3129464026 @default.
- W3175995003 cites W3132950184 @default.
- W3175995003 cites W3156898971 @default.
- W3175995003 cites W3157421340 @default.
- W3175995003 cites W3157424490 @default.
- W3175995003 cites W3158907482 @default.
- W3175995003 cites W3159767962 @default.
- W3175995003 doi "https://doi.org/10.1016/j.enconman.2021.114269" @default.
- W3175995003 hasPublicationYear "2021" @default.
- W3175995003 type Work @default.
- W3175995003 sameAs 3175995003 @default.
- W3175995003 citedByCount "32" @default.
- W3175995003 countsByYear W31759950032021 @default.
- W3175995003 countsByYear W31759950032022 @default.
- W3175995003 countsByYear W31759950032023 @default.
- W3175995003 crossrefType "journal-article" @default.
- W3175995003 hasAuthorship W3175995003A5009060342 @default.
- W3175995003 hasAuthorship W3175995003A5052981255 @default.
- W3175995003 hasAuthorship W3175995003A5058358526 @default.
- W3175995003 hasAuthorship W3175995003A5061573149 @default.
- W3175995003 hasAuthorship W3175995003A5086816810 @default.
- W3175995003 hasConcept C105795698 @default.
- W3175995003 hasConcept C11413529 @default.
- W3175995003 hasConcept C119599485 @default.
- W3175995003 hasConcept C127413603 @default.
- W3175995003 hasConcept C139945424 @default.
- W3175995003 hasConcept C162324750 @default.
- W3175995003 hasConcept C2777303404 @default.
- W3175995003 hasConcept C33923547 @default.
- W3175995003 hasConcept C41008148 @default.
- W3175995003 hasConcept C41291067 @default.
- W3175995003 hasConcept C50522688 @default.
- W3175995003 hasConceptScore W3175995003C105795698 @default.
- W3175995003 hasConceptScore W3175995003C11413529 @default.
- W3175995003 hasConceptScore W3175995003C119599485 @default.
- W3175995003 hasConceptScore W3175995003C127413603 @default.
- W3175995003 hasConceptScore W3175995003C139945424 @default.
- W3175995003 hasConceptScore W3175995003C162324750 @default.
- W3175995003 hasConceptScore W3175995003C2777303404 @default.
- W3175995003 hasConceptScore W3175995003C33923547 @default.
- W3175995003 hasConceptScore W3175995003C41008148 @default.
- W3175995003 hasConceptScore W3175995003C41291067 @default.
- W3175995003 hasConceptScore W3175995003C50522688 @default.