Matches in SemOpenAlex for { <https://semopenalex.org/work/W3176009750> ?p ?o ?g. }
- W3176009750 abstract "A common issue for classification in scientific research and industry is the existence of imbalanced classes. When sample sizes of different classes are imbalanced in training data, naively implementing a classification method often leads to unsatisfactory prediction results on test data. Multiple resampling techniques have been proposed to address the class imbalance issues. Yet, there is no general guidance on when to use each technique. In this article, we provide a paradigm-based review of the common resampling techniques for binary classification under imbalanced class sizes. The paradigms we consider include the classical paradigm that minimizes the overall classification error, the cost-sensitive learning paradigm that minimizes a cost-adjusted weighted type I and type II errors, and the Neyman-Pearson paradigm that minimizes the type II error subject to a type I error constraint. Under each paradigm, we investigate the combination of the resampling techniques and a few state-of-the-art classification methods. For each pair of resampling techniques and classification methods, we use simulation studies and a real data set on credit card fraud to study the performance under different evaluation metrics. From these extensive numerical experiments, we demonstrate under each classification paradigm, the complex dynamics among resampling techniques, base classification methods, evaluation metrics, and imbalance ratios. We also summarize a few takeaway messages regarding the choices of resampling techniques and base classification methods, which could be helpful for practitioners." @default.
- W3176009750 created "2021-07-05" @default.
- W3176009750 creator A5044345166 @default.
- W3176009750 creator A5066068373 @default.
- W3176009750 creator A5071157779 @default.
- W3176009750 date "2020-02-11" @default.
- W3176009750 modified "2023-09-26" @default.
- W3176009750 title "Imbalanced classification: a paradigm-based review" @default.
- W3176009750 cites W1484485089 @default.
- W3176009750 cites W1503605645 @default.
- W3176009750 cites W1554944419 @default.
- W3176009750 cites W1588282782 @default.
- W3176009750 cites W1607624180 @default.
- W3176009750 cites W167016754 @default.
- W3176009750 cites W179179905 @default.
- W3176009750 cites W1873332500 @default.
- W3176009750 cites W1966748751 @default.
- W3176009750 cites W1976526581 @default.
- W3176009750 cites W1983085975 @default.
- W3176009750 cites W1985258161 @default.
- W3176009750 cites W1998894275 @default.
- W3176009750 cites W2001652071 @default.
- W3176009750 cites W2015452969 @default.
- W3176009750 cites W2022348393 @default.
- W3176009750 cites W2023450550 @default.
- W3176009750 cites W2025773596 @default.
- W3176009750 cites W2031798371 @default.
- W3176009750 cites W2038030840 @default.
- W3176009750 cites W2058732827 @default.
- W3176009750 cites W2070809717 @default.
- W3176009750 cites W2087787741 @default.
- W3176009750 cites W2088059023 @default.
- W3176009750 cites W2090135786 @default.
- W3176009750 cites W2091007025 @default.
- W3176009750 cites W2096451472 @default.
- W3176009750 cites W2103614420 @default.
- W3176009750 cites W2104597806 @default.
- W3176009750 cites W2104933073 @default.
- W3176009750 cites W2106842132 @default.
- W3176009750 cites W2107138773 @default.
- W3176009750 cites W2107772748 @default.
- W3176009750 cites W2119191234 @default.
- W3176009750 cites W2126734246 @default.
- W3176009750 cites W2128965734 @default.
- W3176009750 cites W2129476886 @default.
- W3176009750 cites W2132791018 @default.
- W3176009750 cites W2135074661 @default.
- W3176009750 cites W2140956714 @default.
- W3176009750 cites W2142261479 @default.
- W3176009750 cites W2148143831 @default.
- W3176009750 cites W2155653793 @default.
- W3176009750 cites W2157279934 @default.
- W3176009750 cites W2164330572 @default.
- W3176009750 cites W2172143581 @default.
- W3176009750 cites W2172165257 @default.
- W3176009750 cites W2230801863 @default.
- W3176009750 cites W2312333072 @default.
- W3176009750 cites W2318571470 @default.
- W3176009750 cites W2331050695 @default.
- W3176009750 cites W2487770199 @default.
- W3176009750 cites W2562319768 @default.
- W3176009750 cites W2588616261 @default.
- W3176009750 cites W273955616 @default.
- W3176009750 cites W2766736793 @default.
- W3176009750 cites W2788398385 @default.
- W3176009750 cites W2801490189 @default.
- W3176009750 cites W2911964244 @default.
- W3176009750 cites W2962720869 @default.
- W3176009750 cites W3015625717 @default.
- W3176009750 cites W3036492781 @default.
- W3176009750 cites W3037068030 @default.
- W3176009750 cites W3102476541 @default.
- W3176009750 cites W32160621 @default.
- W3176009750 cites W47392883 @default.
- W3176009750 cites W769353746 @default.
- W3176009750 doi "https://doi.org/10.48550/arxiv.2002.04592" @default.
- W3176009750 hasPublicationYear "2020" @default.
- W3176009750 type Work @default.
- W3176009750 sameAs 3176009750 @default.
- W3176009750 citedByCount "1" @default.
- W3176009750 countsByYear W31760097502021 @default.
- W3176009750 crossrefType "posted-content" @default.
- W3176009750 hasAuthorship W3176009750A5044345166 @default.
- W3176009750 hasAuthorship W3176009750A5066068373 @default.
- W3176009750 hasAuthorship W3176009750A5071157779 @default.
- W3176009750 hasBestOaLocation W31760097501 @default.
- W3176009750 hasConcept C105795698 @default.
- W3176009750 hasConcept C119857082 @default.
- W3176009750 hasConcept C12267149 @default.
- W3176009750 hasConcept C123860398 @default.
- W3176009750 hasConcept C124101348 @default.
- W3176009750 hasConcept C150921843 @default.
- W3176009750 hasConcept C153180895 @default.
- W3176009750 hasConcept C154945302 @default.
- W3176009750 hasConcept C177264268 @default.
- W3176009750 hasConcept C199360897 @default.
- W3176009750 hasConcept C2524010 @default.
- W3176009750 hasConcept C2776036281 @default.
- W3176009750 hasConcept C2777212361 @default.
- W3176009750 hasConcept C33923547 @default.