Matches in SemOpenAlex for { <https://semopenalex.org/work/W3176010412> ?p ?o ?g. }
- W3176010412 abstract "For applications in chemistry and physics, machine learning is generally used to solve one of three problems: interpolation, classification or clustering. These problems use information about physical systems in a certain range of parameters or variables in order to make predictions at unknown values of these variables within the same range. The present work illustrates the application of machine learning to prediction of physical properties outside the range of the training parameters. We define ‘physical extrapolation’ to refer to accurate predictions y(x∗) of a given physical property at a point (boldsymbol x^ast = left [ x^ast _1, ldots , x^ast _{mathcal {D}} right ]) in the (mathcal {D})-dimensional space, if, at least, one of the variables (x^ast _i in left [ x^ast _1, ldots , x^ast _{mathcal {D}} right ]) is outside of the range covering the training data. We show that Gaussian processes can be used to build machine learning models capable of physical extrapolation of quantum properties of complex systems across quantum phase transitions. The approach is based on training Gaussian process models of variable complexity by the evolution of the physical functions. We show that, as the complexity of the models increases, they become capable of predicting new transitions. We also show that, where the evolution of the physical functions is analytic and relatively simple (one example considered here is a + b∕x + c∕x3), Gaussian process models with simple kernels already yield accurate generalization results, allowing for accurate predictions of quantum properties in a different quantum phase. For more complex problems, it is necessary to build models with complex kernels. The complexity of the kernels is increased using the Bayesian Information Criterion (BIC). We illustrate the importance of the BIC by comparing the results with random kernels of various complexity. We discuss strategies to minimize overfitting and illustrate a method to obtain meaningful extrapolation results without direct validation in the extrapolated region." @default.
- W3176010412 created "2021-07-05" @default.
- W3176010412 creator A5063874950 @default.
- W3176010412 creator A5087205640 @default.
- W3176010412 date "2020-01-01" @default.
- W3176010412 modified "2023-09-23" @default.
- W3176010412 title "Physical Extrapolation of Quantum Observables by Generalization with Gaussian Processes" @default.
- W3176010412 cites W1583686592 @default.
- W3176010412 cites W1865667476 @default.
- W3176010412 cites W1964882117 @default.
- W3176010412 cites W1969119277 @default.
- W3176010412 cites W1975928895 @default.
- W3176010412 cites W1992161108 @default.
- W3176010412 cites W2015541791 @default.
- W3176010412 cites W2020520920 @default.
- W3176010412 cites W2034097448 @default.
- W3176010412 cites W2063007245 @default.
- W3176010412 cites W2135556320 @default.
- W3176010412 cites W2159357141 @default.
- W3176010412 cites W2164524421 @default.
- W3176010412 cites W2164711568 @default.
- W3176010412 cites W2168175751 @default.
- W3176010412 cites W2337082154 @default.
- W3176010412 cites W2414456771 @default.
- W3176010412 cites W2419175238 @default.
- W3176010412 cites W2516533688 @default.
- W3176010412 cites W2531147647 @default.
- W3176010412 cites W2594041373 @default.
- W3176010412 cites W2606470147 @default.
- W3176010412 cites W2610038766 @default.
- W3176010412 cites W2615003501 @default.
- W3176010412 cites W2755695124 @default.
- W3176010412 cites W2756000556 @default.
- W3176010412 cites W2765597272 @default.
- W3176010412 cites W2766323574 @default.
- W3176010412 cites W2769287225 @default.
- W3176010412 cites W2774682142 @default.
- W3176010412 cites W2788379092 @default.
- W3176010412 cites W2790441086 @default.
- W3176010412 cites W2792351009 @default.
- W3176010412 cites W2799261665 @default.
- W3176010412 cites W2805705780 @default.
- W3176010412 cites W2897870668 @default.
- W3176010412 cites W2911351655 @default.
- W3176010412 cites W2950674591 @default.
- W3176010412 cites W3099013266 @default.
- W3176010412 cites W3099773359 @default.
- W3176010412 cites W3103345637 @default.
- W3176010412 cites W3104481216 @default.
- W3176010412 cites W3104864936 @default.
- W3176010412 cites W3106447034 @default.
- W3176010412 doi "https://doi.org/10.1007/978-3-030-40245-7_9" @default.
- W3176010412 hasPublicationYear "2020" @default.
- W3176010412 type Work @default.
- W3176010412 sameAs 3176010412 @default.
- W3176010412 citedByCount "0" @default.
- W3176010412 crossrefType "book-chapter" @default.
- W3176010412 hasAuthorship W3176010412A5063874950 @default.
- W3176010412 hasAuthorship W3176010412A5087205640 @default.
- W3176010412 hasBestOaLocation W31760104122 @default.
- W3176010412 hasConcept C104114177 @default.
- W3176010412 hasConcept C116672817 @default.
- W3176010412 hasConcept C119857082 @default.
- W3176010412 hasConcept C121332964 @default.
- W3176010412 hasConcept C121864883 @default.
- W3176010412 hasConcept C132459708 @default.
- W3176010412 hasConcept C134306372 @default.
- W3176010412 hasConcept C137800194 @default.
- W3176010412 hasConcept C159985019 @default.
- W3176010412 hasConcept C163716315 @default.
- W3176010412 hasConcept C177148314 @default.
- W3176010412 hasConcept C192562407 @default.
- W3176010412 hasConcept C204323151 @default.
- W3176010412 hasConcept C32848918 @default.
- W3176010412 hasConcept C33923547 @default.
- W3176010412 hasConcept C41008148 @default.
- W3176010412 hasConcept C61326573 @default.
- W3176010412 hasConcept C62520636 @default.
- W3176010412 hasConcept C74650414 @default.
- W3176010412 hasConcept C81692654 @default.
- W3176010412 hasConcept C84114770 @default.
- W3176010412 hasConceptScore W3176010412C104114177 @default.
- W3176010412 hasConceptScore W3176010412C116672817 @default.
- W3176010412 hasConceptScore W3176010412C119857082 @default.
- W3176010412 hasConceptScore W3176010412C121332964 @default.
- W3176010412 hasConceptScore W3176010412C121864883 @default.
- W3176010412 hasConceptScore W3176010412C132459708 @default.
- W3176010412 hasConceptScore W3176010412C134306372 @default.
- W3176010412 hasConceptScore W3176010412C137800194 @default.
- W3176010412 hasConceptScore W3176010412C159985019 @default.
- W3176010412 hasConceptScore W3176010412C163716315 @default.
- W3176010412 hasConceptScore W3176010412C177148314 @default.
- W3176010412 hasConceptScore W3176010412C192562407 @default.
- W3176010412 hasConceptScore W3176010412C204323151 @default.
- W3176010412 hasConceptScore W3176010412C32848918 @default.
- W3176010412 hasConceptScore W3176010412C33923547 @default.
- W3176010412 hasConceptScore W3176010412C41008148 @default.
- W3176010412 hasConceptScore W3176010412C61326573 @default.
- W3176010412 hasConceptScore W3176010412C62520636 @default.
- W3176010412 hasConceptScore W3176010412C74650414 @default.