Matches in SemOpenAlex for { <https://semopenalex.org/work/W3176110204> ?p ?o ?g. }
- W3176110204 endingPage "7016" @default.
- W3176110204 startingPage "7001" @default.
- W3176110204 abstract "Deriving the extent of areas affected by wildfires is critical to fire management, protection of the population, damage assessment, and better understanding of the consequences of fires. In the past two decades, several algorithms utilizing data from Earth observation satellites have been developed to detect fire-affected areas. However, most of these methods require the establishment of complex functional relationships between numerous remote sensing data parameters. In contrast, more recently, deep learning has found its way into the application, having the advantage of being able to detect patterns in complex data by learning from examples automatically. In this article, a workflow for the detection of fire-affected areas from satellite imagery acquired in the visible, infrared, and microwave domains is described. Using this workflow, the fire detection potentials of four sources of freely available satellite imagery were investigated: the C-SAR instrument on board Sentinel-1, the multispectral instrument on board Sentinel-2, the sea and land surface temperature instrument on board Sentinel-3, and the MODIS instrument on board Terra and Aqua. For each of them, a single-input convolutional neural network based on the well-known U-Net architecture was trained on a newly created dataset. The performance of the resulting four single-instrument models was evaluated in presence of clouds and in clear conditions. In addition, the potential of combining predictions from pairs of single-instrument models was investigated. The results show that fusion of Sentinel-2 and Sentinel-3 data provides the best detection rate in clear conditions, whereas the fusion of Sentinel-1 and Sentinel-2 data shows a significant benefit in cloudy weather." @default.
- W3176110204 created "2021-07-05" @default.
- W3176110204 creator A5056179006 @default.
- W3176110204 creator A5056787605 @default.
- W3176110204 creator A5058601965 @default.
- W3176110204 creator A5082556026 @default.
- W3176110204 date "2021-01-01" @default.
- W3176110204 modified "2023-10-06" @default.
- W3176110204 title "Wildfire Detection From Multisensor Satellite Imagery Using Deep Semantic Segmentation" @default.
- W3176110204 cites W1966272358 @default.
- W3176110204 cites W1980058571 @default.
- W3176110204 cites W1984670836 @default.
- W3176110204 cites W2023044260 @default.
- W3176110204 cites W2051922385 @default.
- W3176110204 cites W2056435747 @default.
- W3176110204 cites W2060380661 @default.
- W3176110204 cites W2080973951 @default.
- W3176110204 cites W2145117854 @default.
- W3176110204 cites W2151036870 @default.
- W3176110204 cites W2174009612 @default.
- W3176110204 cites W2301696792 @default.
- W3176110204 cites W2515329145 @default.
- W3176110204 cites W2531213996 @default.
- W3176110204 cites W2559468428 @default.
- W3176110204 cites W2742012967 @default.
- W3176110204 cites W2767746666 @default.
- W3176110204 cites W2769774644 @default.
- W3176110204 cites W2782817750 @default.
- W3176110204 cites W2883778034 @default.
- W3176110204 cites W2887685367 @default.
- W3176110204 cites W2902401595 @default.
- W3176110204 cites W2902746003 @default.
- W3176110204 cites W2913323966 @default.
- W3176110204 cites W2914699052 @default.
- W3176110204 cites W2920767026 @default.
- W3176110204 cites W2942173665 @default.
- W3176110204 cites W2947150510 @default.
- W3176110204 cites W2962914239 @default.
- W3176110204 cites W2968773978 @default.
- W3176110204 cites W3003452346 @default.
- W3176110204 cites W3037074658 @default.
- W3176110204 cites W3039741089 @default.
- W3176110204 cites W3045606376 @default.
- W3176110204 cites W3048631361 @default.
- W3176110204 cites W3099079911 @default.
- W3176110204 cites W3105021316 @default.
- W3176110204 cites W3135445258 @default.
- W3176110204 doi "https://doi.org/10.1109/jstars.2021.3093625" @default.
- W3176110204 hasPublicationYear "2021" @default.
- W3176110204 type Work @default.
- W3176110204 sameAs 3176110204 @default.
- W3176110204 citedByCount "30" @default.
- W3176110204 countsByYear W31761102042021 @default.
- W3176110204 countsByYear W31761102042022 @default.
- W3176110204 countsByYear W31761102042023 @default.
- W3176110204 crossrefType "journal-article" @default.
- W3176110204 hasAuthorship W3176110204A5056179006 @default.
- W3176110204 hasAuthorship W3176110204A5056787605 @default.
- W3176110204 hasAuthorship W3176110204A5058601965 @default.
- W3176110204 hasAuthorship W3176110204A5082556026 @default.
- W3176110204 hasBestOaLocation W31761102041 @default.
- W3176110204 hasConcept C108583219 @default.
- W3176110204 hasConcept C121332964 @default.
- W3176110204 hasConcept C127313418 @default.
- W3176110204 hasConcept C127413603 @default.
- W3176110204 hasConcept C146978453 @default.
- W3176110204 hasConcept C154945302 @default.
- W3176110204 hasConcept C173163844 @default.
- W3176110204 hasConcept C177212765 @default.
- W3176110204 hasConcept C19269812 @default.
- W3176110204 hasConcept C203595873 @default.
- W3176110204 hasConcept C2778102629 @default.
- W3176110204 hasConcept C2780836893 @default.
- W3176110204 hasConcept C33954974 @default.
- W3176110204 hasConcept C39399123 @default.
- W3176110204 hasConcept C39432304 @default.
- W3176110204 hasConcept C41008148 @default.
- W3176110204 hasConcept C62649853 @default.
- W3176110204 hasConcept C77088390 @default.
- W3176110204 hasConcept C81363708 @default.
- W3176110204 hasConcept C97355855 @default.
- W3176110204 hasConceptScore W3176110204C108583219 @default.
- W3176110204 hasConceptScore W3176110204C121332964 @default.
- W3176110204 hasConceptScore W3176110204C127313418 @default.
- W3176110204 hasConceptScore W3176110204C127413603 @default.
- W3176110204 hasConceptScore W3176110204C146978453 @default.
- W3176110204 hasConceptScore W3176110204C154945302 @default.
- W3176110204 hasConceptScore W3176110204C173163844 @default.
- W3176110204 hasConceptScore W3176110204C177212765 @default.
- W3176110204 hasConceptScore W3176110204C19269812 @default.
- W3176110204 hasConceptScore W3176110204C203595873 @default.
- W3176110204 hasConceptScore W3176110204C2778102629 @default.
- W3176110204 hasConceptScore W3176110204C2780836893 @default.
- W3176110204 hasConceptScore W3176110204C33954974 @default.
- W3176110204 hasConceptScore W3176110204C39399123 @default.
- W3176110204 hasConceptScore W3176110204C39432304 @default.
- W3176110204 hasConceptScore W3176110204C41008148 @default.
- W3176110204 hasConceptScore W3176110204C62649853 @default.