Matches in SemOpenAlex for { <https://semopenalex.org/work/W3176139744> ?p ?o ?g. }
- W3176139744 abstract "Recently, bladder cancer has been significantly increased in terms of incidence and mortality. Currently, two subtypes are known based on tumour growth: non-muscle invasive (NMIBC) and muscle-invasive bladder cancer (MIBC). In this work, we focus on the MIBC subtype because it is of the worst prognosis and can spread to adjacent organs. We present a self-learning framework to grade bladder cancer from histological images stained via immunohistochemical techniques. Specifically, we propose a novel Deep Convolutional Embedded Attention Clustering (DCEAC) which allows classifying histological patches into different severity levels of the disease, according to the patterns established in the literature. The proposed DCEAC model follows a two-step fully unsupervised learning methodology to discern between non-tumour, mild and infiltrative patterns from high-resolution samples of 512x512 pixels. Our system outperforms previous clustering-based methods by including a convolutional attention module, which allows refining the features of the latent space before the classification stage. The proposed network exceeds state-of-the-art approaches by 2-3% across different metrics, achieving a final average accuracy of 0.9034 in a multi-class scenario. Furthermore, the reported class activation maps evidence that our model is able to learn by itself the same patterns that clinicians consider relevant, without incurring prior annotation steps. This fact supposes a breakthrough in muscle-invasive bladder cancer grading which bridges the gap with respect to train the model on labelled data." @default.
- W3176139744 created "2021-07-05" @default.
- W3176139744 creator A5014654098 @default.
- W3176139744 creator A5019517367 @default.
- W3176139744 creator A5037959756 @default.
- W3176139744 creator A5043316752 @default.
- W3176139744 creator A5070145415 @default.
- W3176139744 date "2021-06-25" @default.
- W3176139744 modified "2023-10-08" @default.
- W3176139744 title "A Novel Self-Learning Framework for Bladder Cancer Grading Using Histopathological Images" @default.
- W3176139744 cites W1514375011 @default.
- W3176139744 cites W1573560334 @default.
- W3176139744 cites W1836465849 @default.
- W3176139744 cites W1965842639 @default.
- W3176139744 cites W1971006188 @default.
- W3176139744 cites W2023133954 @default.
- W3176139744 cites W2057067430 @default.
- W3176139744 cites W2108954236 @default.
- W3176139744 cites W2136655611 @default.
- W3176139744 cites W2221409856 @default.
- W3176139744 cites W2295107390 @default.
- W3176139744 cites W2437534037 @default.
- W3176139744 cites W2441381272 @default.
- W3176139744 cites W2473162054 @default.
- W3176139744 cites W2571899125 @default.
- W3176139744 cites W2765741717 @default.
- W3176139744 cites W2908698261 @default.
- W3176139744 cites W2913272695 @default.
- W3176139744 cites W2913341171 @default.
- W3176139744 cites W2945807221 @default.
- W3176139744 cites W2962742544 @default.
- W3176139744 cites W2964074409 @default.
- W3176139744 cites W2991254538 @default.
- W3176139744 cites W2992824173 @default.
- W3176139744 cites W3004561761 @default.
- W3176139744 cites W3018647685 @default.
- W3176139744 cites W3034978746 @default.
- W3176139744 cites W3035468615 @default.
- W3176139744 cites W3043049467 @default.
- W3176139744 cites W3095774067 @default.
- W3176139744 cites W3103805449 @default.
- W3176139744 cites W3132720877 @default.
- W3176139744 cites W3136816266 @default.
- W3176139744 cites W3153187969 @default.
- W3176139744 cites W6908809 @default.
- W3176139744 hasPublicationYear "2021" @default.
- W3176139744 type Work @default.
- W3176139744 sameAs 3176139744 @default.
- W3176139744 citedByCount "0" @default.
- W3176139744 crossrefType "posted-content" @default.
- W3176139744 hasAuthorship W3176139744A5014654098 @default.
- W3176139744 hasAuthorship W3176139744A5019517367 @default.
- W3176139744 hasAuthorship W3176139744A5037959756 @default.
- W3176139744 hasAuthorship W3176139744A5043316752 @default.
- W3176139744 hasAuthorship W3176139744A5070145415 @default.
- W3176139744 hasConcept C108583219 @default.
- W3176139744 hasConcept C119857082 @default.
- W3176139744 hasConcept C121608353 @default.
- W3176139744 hasConcept C126322002 @default.
- W3176139744 hasConcept C153180895 @default.
- W3176139744 hasConcept C154945302 @default.
- W3176139744 hasConcept C160633673 @default.
- W3176139744 hasConcept C18903297 @default.
- W3176139744 hasConcept C2777286243 @default.
- W3176139744 hasConcept C2777522853 @default.
- W3176139744 hasConcept C2780352672 @default.
- W3176139744 hasConcept C41008148 @default.
- W3176139744 hasConcept C71924100 @default.
- W3176139744 hasConcept C73555534 @default.
- W3176139744 hasConcept C86803240 @default.
- W3176139744 hasConceptScore W3176139744C108583219 @default.
- W3176139744 hasConceptScore W3176139744C119857082 @default.
- W3176139744 hasConceptScore W3176139744C121608353 @default.
- W3176139744 hasConceptScore W3176139744C126322002 @default.
- W3176139744 hasConceptScore W3176139744C153180895 @default.
- W3176139744 hasConceptScore W3176139744C154945302 @default.
- W3176139744 hasConceptScore W3176139744C160633673 @default.
- W3176139744 hasConceptScore W3176139744C18903297 @default.
- W3176139744 hasConceptScore W3176139744C2777286243 @default.
- W3176139744 hasConceptScore W3176139744C2777522853 @default.
- W3176139744 hasConceptScore W3176139744C2780352672 @default.
- W3176139744 hasConceptScore W3176139744C41008148 @default.
- W3176139744 hasConceptScore W3176139744C71924100 @default.
- W3176139744 hasConceptScore W3176139744C73555534 @default.
- W3176139744 hasConceptScore W3176139744C86803240 @default.
- W3176139744 hasOpenAccess W3176139744 @default.
- W3176139744 hasRelatedWork W2399721680 @default.
- W3176139744 hasRelatedWork W2415796710 @default.
- W3176139744 hasRelatedWork W2890815230 @default.
- W3176139744 hasRelatedWork W2971337201 @default.
- W3176139744 hasRelatedWork W2979474933 @default.
- W3176139744 hasRelatedWork W2997214020 @default.
- W3176139744 hasRelatedWork W3012095418 @default.
- W3176139744 hasRelatedWork W3016044592 @default.
- W3176139744 hasRelatedWork W3028078009 @default.
- W3176139744 hasRelatedWork W3040734937 @default.
- W3176139744 hasRelatedWork W3041522598 @default.
- W3176139744 hasRelatedWork W3090401039 @default.
- W3176139744 hasRelatedWork W3096363998 @default.
- W3176139744 hasRelatedWork W3098828024 @default.