Matches in SemOpenAlex for { <https://semopenalex.org/work/W3176175053> ?p ?o ?g. }
- W3176175053 endingPage "100292" @default.
- W3176175053 startingPage "100292" @default.
- W3176175053 abstract "The development of ultrafast detectors for electron microscopy (EM) opens a new door to exploring dynamics of nanomaterials; however, it raises grand challenges for big data processing and storage. Here, we combine deep learning and temporal compressive sensing (TCS) to propose a novel EM big data compression strategy. Specifically, TCS is employed to compress sequential EM images into a single compressed measurement; an end-to-end deep learning network is leveraged to reconstruct the original images. Owing to the significantly improved compression efficiency and built-in denoising capability of the deep learning framework over conventional JPEG compression, compressed videos with a compression ratio of up to 30 can be reconstructed with high fidelity. Using this approach, considerable encoding power, memory, and transmission bandwidth can be saved, allowing it to be deployed to existing detectors. We anticipate the proposed technique will have far-reaching applications in edge computing for EM and other imaging techniques." @default.
- W3176175053 created "2021-07-05" @default.
- W3176175053 creator A5010613571 @default.
- W3176175053 creator A5015431603 @default.
- W3176175053 creator A5018734681 @default.
- W3176175053 creator A5033289888 @default.
- W3176175053 date "2021-07-01" @default.
- W3176175053 modified "2023-10-14" @default.
- W3176175053 title "Super-compression of large electron microscopy time series by deep compressive sensing learning" @default.
- W3176175053 cites W1984809562 @default.
- W3176175053 cites W1992653101 @default.
- W3176175053 cites W2002498099 @default.
- W3176175053 cites W2008521719 @default.
- W3176175053 cites W2084591647 @default.
- W3176175053 cites W2097889020 @default.
- W3176175053 cites W2108579567 @default.
- W3176175053 cites W2119667497 @default.
- W3176175053 cites W2131774270 @default.
- W3176175053 cites W2142033246 @default.
- W3176175053 cites W2145096794 @default.
- W3176175053 cites W2164659462 @default.
- W3176175053 cites W2212988997 @default.
- W3176175053 cites W2215460940 @default.
- W3176175053 cites W2259196414 @default.
- W3176175053 cites W2266216861 @default.
- W3176175053 cites W2323264224 @default.
- W3176175053 cites W2522510678 @default.
- W3176175053 cites W2560480186 @default.
- W3176175053 cites W2743313751 @default.
- W3176175053 cites W2784650278 @default.
- W3176175053 cites W2801732004 @default.
- W3176175053 cites W2806686581 @default.
- W3176175053 cites W2835210520 @default.
- W3176175053 cites W2884144629 @default.
- W3176175053 cites W2953700900 @default.
- W3176175053 cites W2955663604 @default.
- W3176175053 cites W2971995780 @default.
- W3176175053 cites W2977094333 @default.
- W3176175053 cites W2979652264 @default.
- W3176175053 cites W2990056165 @default.
- W3176175053 cites W2998871245 @default.
- W3176175053 cites W3003856351 @default.
- W3176175053 cites W3015097303 @default.
- W3176175053 cites W3087891374 @default.
- W3176175053 cites W3090814946 @default.
- W3176175053 cites W3099352946 @default.
- W3176175053 cites W3106592418 @default.
- W3176175053 cites W3108567638 @default.
- W3176175053 cites W3134276259 @default.
- W3176175053 cites W3134510327 @default.
- W3176175053 cites W3142693677 @default.
- W3176175053 cites W3149538574 @default.
- W3176175053 cites W3156092364 @default.
- W3176175053 cites W4250955649 @default.
- W3176175053 doi "https://doi.org/10.1016/j.patter.2021.100292" @default.
- W3176175053 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8276025" @default.
- W3176175053 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34286306" @default.
- W3176175053 hasPublicationYear "2021" @default.
- W3176175053 type Work @default.
- W3176175053 sameAs 3176175053 @default.
- W3176175053 citedByCount "14" @default.
- W3176175053 countsByYear W31761750532021 @default.
- W3176175053 countsByYear W31761750532022 @default.
- W3176175053 countsByYear W31761750532023 @default.
- W3176175053 crossrefType "journal-article" @default.
- W3176175053 hasAuthorship W3176175053A5010613571 @default.
- W3176175053 hasAuthorship W3176175053A5015431603 @default.
- W3176175053 hasAuthorship W3176175053A5018734681 @default.
- W3176175053 hasAuthorship W3176175053A5033289888 @default.
- W3176175053 hasBestOaLocation W31761750531 @default.
- W3176175053 hasConcept C108583219 @default.
- W3176175053 hasConcept C113364801 @default.
- W3176175053 hasConcept C115961682 @default.
- W3176175053 hasConcept C119599485 @default.
- W3176175053 hasConcept C121332964 @default.
- W3176175053 hasConcept C124851039 @default.
- W3176175053 hasConcept C125411270 @default.
- W3176175053 hasConcept C127413603 @default.
- W3176175053 hasConcept C13481523 @default.
- W3176175053 hasConcept C154945302 @default.
- W3176175053 hasConcept C159985019 @default.
- W3176175053 hasConcept C180016635 @default.
- W3176175053 hasConcept C192562407 @default.
- W3176175053 hasConcept C25797200 @default.
- W3176175053 hasConcept C31972630 @default.
- W3176175053 hasConcept C41008148 @default.
- W3176175053 hasConcept C511840579 @default.
- W3176175053 hasConcept C76155785 @default.
- W3176175053 hasConcept C78548338 @default.
- W3176175053 hasConcept C9417928 @default.
- W3176175053 hasConcept C94915269 @default.
- W3176175053 hasConcept C97355855 @default.
- W3176175053 hasConceptScore W3176175053C108583219 @default.
- W3176175053 hasConceptScore W3176175053C113364801 @default.
- W3176175053 hasConceptScore W3176175053C115961682 @default.
- W3176175053 hasConceptScore W3176175053C119599485 @default.
- W3176175053 hasConceptScore W3176175053C121332964 @default.
- W3176175053 hasConceptScore W3176175053C124851039 @default.