Matches in SemOpenAlex for { <https://semopenalex.org/work/W3176262078> ?p ?o ?g. }
- W3176262078 endingPage "3017" @default.
- W3176262078 startingPage "3002" @default.
- W3176262078 abstract "Viral infection causes a wide variety of human diseases including cancer and COVID-19. Viruses invade host cells and associate with host molecules, potentially disrupting the normal function of hosts that leads to fatal diseases. Novel viral genome prediction is crucial for understanding the complex viral diseases like AIDS and Ebola. While most existing computational techniques classify viral genomes, the efficiency of the classification depends solely on the structural features extracted. The state-of-the-art DNN models achieved excellent performance by automatic extraction of classification features, but the degree of model explainability is relatively poor. During model training for viral prediction, proposed CNN, CNN-LSTM based methods (EdeepVPP, EdeepVPP-hybrid) automatically extracts features. EdeepVPP also performs model interpretability in order to extract the most important patterns that cause viral genomes through learned filters. It is an interpretable CNN model that extracts vital biologically relevant patterns (features) from feature maps of viral sequences. The EdeepVPP-hybrid predictor outperforms all the existing methods by achieving 0.992 mean AUC-ROC and 0.990 AUC-PR on 19 human metagenomic contig experiment datasets using 10-fold cross-validation. We evaluate the ability of CNN filters to detect patterns across high average activation values. To further asses the robustness of EdeepVPP model, we perform leave-one-experiment-out cross-validation. It can work as a recommendation system to further analyze the raw sequences labeled as 'unknown' by alignment-based methods. We show that our interpretable model can extract patterns that are considered to be the most important features for predicting virus sequences through learned filters." @default.
- W3176262078 created "2021-07-05" @default.
- W3176262078 creator A5007529224 @default.
- W3176262078 creator A5039049132 @default.
- W3176262078 date "2021-06-25" @default.
- W3176262078 modified "2023-10-16" @default.
- W3176262078 title "Explainable deep neural networks for novel viral genome prediction" @default.
- W3176262078 cites W1516998804 @default.
- W3176262078 cites W1864564002 @default.
- W3176262078 cites W1951403192 @default.
- W3176262078 cites W1964431626 @default.
- W3176262078 cites W1969028669 @default.
- W3176262078 cites W1987075894 @default.
- W3176262078 cites W2008828320 @default.
- W3176262078 cites W2020301105 @default.
- W3176262078 cites W2021072046 @default.
- W3176262078 cites W2021541608 @default.
- W3176262078 cites W2021906118 @default.
- W3176262078 cites W2052437948 @default.
- W3176262078 cites W2054520741 @default.
- W3176262078 cites W2055043387 @default.
- W3176262078 cites W2059136964 @default.
- W3176262078 cites W2062920004 @default.
- W3176262078 cites W2064675550 @default.
- W3176262078 cites W2070519435 @default.
- W3176262078 cites W2075966487 @default.
- W3176262078 cites W2081319466 @default.
- W3176262078 cites W2085487956 @default.
- W3176262078 cites W2102652793 @default.
- W3176262078 cites W2103777723 @default.
- W3176262078 cites W2114104680 @default.
- W3176262078 cites W2119859604 @default.
- W3176262078 cites W2120267228 @default.
- W3176262078 cites W2124351063 @default.
- W3176262078 cites W2145716882 @default.
- W3176262078 cites W2145933466 @default.
- W3176262078 cites W2157009395 @default.
- W3176262078 cites W2157702265 @default.
- W3176262078 cites W2158266834 @default.
- W3176262078 cites W2264017649 @default.
- W3176262078 cites W2321452352 @default.
- W3176262078 cites W2336509392 @default.
- W3176262078 cites W2345512687 @default.
- W3176262078 cites W2502949459 @default.
- W3176262078 cites W2507089332 @default.
- W3176262078 cites W2565021715 @default.
- W3176262078 cites W2732139758 @default.
- W3176262078 cites W2764024122 @default.
- W3176262078 cites W2767749844 @default.
- W3176262078 cites W2789467204 @default.
- W3176262078 cites W2799996237 @default.
- W3176262078 cites W2809442901 @default.
- W3176262078 cites W2883604836 @default.
- W3176262078 cites W2886112809 @default.
- W3176262078 cites W2891784361 @default.
- W3176262078 cites W2919115771 @default.
- W3176262078 cites W2939880928 @default.
- W3176262078 cites W2949434355 @default.
- W3176262078 cites W2949759087 @default.
- W3176262078 cites W2964716450 @default.
- W3176262078 cites W2973098646 @default.
- W3176262078 cites W2979481854 @default.
- W3176262078 cites W3003110834 @default.
- W3176262078 cites W3003934875 @default.
- W3176262078 cites W3036319923 @default.
- W3176262078 cites W3037743169 @default.
- W3176262078 cites W3106638601 @default.
- W3176262078 cites W3112703609 @default.
- W3176262078 cites W3128792544 @default.
- W3176262078 cites W4206210655 @default.
- W3176262078 cites W89534147 @default.
- W3176262078 doi "https://doi.org/10.1007/s10489-021-02572-3" @default.
- W3176262078 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8232563" @default.
- W3176262078 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34764607" @default.
- W3176262078 hasPublicationYear "2021" @default.
- W3176262078 type Work @default.
- W3176262078 sameAs 3176262078 @default.
- W3176262078 citedByCount "18" @default.
- W3176262078 countsByYear W31762620782021 @default.
- W3176262078 countsByYear W31762620782022 @default.
- W3176262078 countsByYear W31762620782023 @default.
- W3176262078 crossrefType "journal-article" @default.
- W3176262078 hasAuthorship W3176262078A5007529224 @default.
- W3176262078 hasAuthorship W3176262078A5039049132 @default.
- W3176262078 hasBestOaLocation W31762620781 @default.
- W3176262078 hasConcept C104317684 @default.
- W3176262078 hasConcept C108583219 @default.
- W3176262078 hasConcept C119857082 @default.
- W3176262078 hasConcept C13280743 @default.
- W3176262078 hasConcept C141231307 @default.
- W3176262078 hasConcept C153180895 @default.
- W3176262078 hasConcept C154945302 @default.
- W3176262078 hasConcept C185798385 @default.
- W3176262078 hasConcept C205649164 @default.
- W3176262078 hasConcept C2778827112 @default.
- W3176262078 hasConcept C2781067378 @default.
- W3176262078 hasConcept C41008148 @default.
- W3176262078 hasConcept C50644808 @default.