Matches in SemOpenAlex for { <https://semopenalex.org/work/W3176266508> ?p ?o ?g. }
- W3176266508 endingPage "103336" @default.
- W3176266508 startingPage "103325" @default.
- W3176266508 abstract "To further extend the applicability of wearable sensors, methods for accurately extracting subtle psychological information from the sensor data are required. However, accessing subjective information in everyday life, such as cognitive load, remains challenging. To bring consensus on methods for cognitive load monitoring, a machine learning challenge is organized. The participants developed machine learning methods for cognitive load classification using wrist-worn physiological sensors' data, namely heart rate, R-R intervals, skin conductance, and skin temperature. The data from subjects solving cognitive tasks of varying difficulty is used for the challenge. This article presents a systematic comparison and multi-strategic performance evaluation of the thirteen methods submitted to this challenge. A systematic comparison of preprocessing techniques, classification algorithms, and implementation techniques is presented. Performance variations for different task difficulty levels, different subjects, and different experiment periods are evaluated. The results indicate that the most robust methods used multimodal sensor data, classical classification approaches such as decision trees and support vector machines or their ensembles, and Bayesian hyperparameter optimization for hyperparameter tuning. The most accurate models used handcrafted features that are further selected using sequential backward floating search and evaluated using stratified person-aware cross-validation strategy. Moreover, the results indicated better classification performance for specific test subjects, the tasks with the highest difficulty, and in some cases, the time elapsed since the start of the experiment. This dependency is likely due to model overfitting or due to the subjective nature of the psychophysiological process. The intersubject variability in responses is challenging to be captured through objective binary labels for cognitive load, thereby warranting more sophisticated annotation approaches." @default.
- W3176266508 created "2021-07-05" @default.
- W3176266508 creator A5004955908 @default.
- W3176266508 creator A5012562174 @default.
- W3176266508 creator A5034815670 @default.
- W3176266508 creator A5037458079 @default.
- W3176266508 creator A5040176687 @default.
- W3176266508 creator A5043398857 @default.
- W3176266508 creator A5043419128 @default.
- W3176266508 creator A5056131302 @default.
- W3176266508 creator A5061812704 @default.
- W3176266508 date "2021-01-01" @default.
- W3176266508 modified "2023-10-13" @default.
- W3176266508 title "Cognitive Load Monitoring With Wearables–Lessons Learned From a Machine Learning Challenge" @default.
- W3176266508 cites W1963627499 @default.
- W3176266508 cites W1973204205 @default.
- W3176266508 cites W1978941942 @default.
- W3176266508 cites W2010318514 @default.
- W3176266508 cites W2043745365 @default.
- W3176266508 cites W2065073464 @default.
- W3176266508 cites W2113555622 @default.
- W3176266508 cites W2128026023 @default.
- W3176266508 cites W2157289187 @default.
- W3176266508 cites W2203197981 @default.
- W3176266508 cites W2325561707 @default.
- W3176266508 cites W2368514363 @default.
- W3176266508 cites W2394865193 @default.
- W3176266508 cites W2556375574 @default.
- W3176266508 cites W2579611607 @default.
- W3176266508 cites W2741351499 @default.
- W3176266508 cites W2742338588 @default.
- W3176266508 cites W2774167400 @default.
- W3176266508 cites W2794857355 @default.
- W3176266508 cites W2795960359 @default.
- W3176266508 cites W2884417535 @default.
- W3176266508 cites W2886781340 @default.
- W3176266508 cites W2890929258 @default.
- W3176266508 cites W2898672087 @default.
- W3176266508 cites W2899130619 @default.
- W3176266508 cites W2908709006 @default.
- W3176266508 cites W2913204146 @default.
- W3176266508 cites W2915317031 @default.
- W3176266508 cites W2916148828 @default.
- W3176266508 cites W2953580877 @default.
- W3176266508 cites W2962452341 @default.
- W3176266508 cites W2963864772 @default.
- W3176266508 cites W2964773275 @default.
- W3176266508 cites W2978697615 @default.
- W3176266508 cites W2981306169 @default.
- W3176266508 cites W2999665664 @default.
- W3176266508 cites W3006901344 @default.
- W3176266508 cites W3010704351 @default.
- W3176266508 cites W3015948701 @default.
- W3176266508 cites W3020839064 @default.
- W3176266508 cites W3033146535 @default.
- W3176266508 cites W3047117830 @default.
- W3176266508 cites W3084775020 @default.
- W3176266508 cites W3134229529 @default.
- W3176266508 cites W3136317686 @default.
- W3176266508 doi "https://doi.org/10.1109/access.2021.3093216" @default.
- W3176266508 hasPublicationYear "2021" @default.
- W3176266508 type Work @default.
- W3176266508 sameAs 3176266508 @default.
- W3176266508 citedByCount "10" @default.
- W3176266508 countsByYear W31762665082022 @default.
- W3176266508 countsByYear W31762665082023 @default.
- W3176266508 crossrefType "journal-article" @default.
- W3176266508 hasAuthorship W3176266508A5004955908 @default.
- W3176266508 hasAuthorship W3176266508A5012562174 @default.
- W3176266508 hasAuthorship W3176266508A5034815670 @default.
- W3176266508 hasAuthorship W3176266508A5037458079 @default.
- W3176266508 hasAuthorship W3176266508A5040176687 @default.
- W3176266508 hasAuthorship W3176266508A5043398857 @default.
- W3176266508 hasAuthorship W3176266508A5043419128 @default.
- W3176266508 hasAuthorship W3176266508A5056131302 @default.
- W3176266508 hasAuthorship W3176266508A5061812704 @default.
- W3176266508 hasBestOaLocation W31762665081 @default.
- W3176266508 hasConcept C111919701 @default.
- W3176266508 hasConcept C119857082 @default.
- W3176266508 hasConcept C12267149 @default.
- W3176266508 hasConcept C127413603 @default.
- W3176266508 hasConcept C149635348 @default.
- W3176266508 hasConcept C150594956 @default.
- W3176266508 hasConcept C154945302 @default.
- W3176266508 hasConcept C169760540 @default.
- W3176266508 hasConcept C169900460 @default.
- W3176266508 hasConcept C201995342 @default.
- W3176266508 hasConcept C22019652 @default.
- W3176266508 hasConcept C2778049539 @default.
- W3176266508 hasConcept C2780451532 @default.
- W3176266508 hasConcept C34736171 @default.
- W3176266508 hasConcept C41008148 @default.
- W3176266508 hasConcept C50644808 @default.
- W3176266508 hasConcept C61641136 @default.
- W3176266508 hasConcept C8642999 @default.
- W3176266508 hasConcept C86803240 @default.
- W3176266508 hasConcept C98045186 @default.
- W3176266508 hasConceptScore W3176266508C111919701 @default.