Matches in SemOpenAlex for { <https://semopenalex.org/work/W3176276396> ?p ?o ?g. }
- W3176276396 abstract "Few-shot learning aims to correctly recognize query samples from unseen classes given a limited number of support samples, often by relying on global embeddings of images. In this paper, we propose to equip the backbone network with an attention agent, which is trained by reinforcement learning. The policy gradient algorithm is employed to train the agent towards adaptively localizing the representative regions on feature maps over time. We further design a reward function based on the prediction of the held-out data, thus helping the attention mechanism to generalize better across the unseen classes. The extensive experiments show, with the help of the reinforced attention, that our embedding network has the capability to progressively generate a more discriminative representation in few-shot learning. Moreover, experiments on the task of image classification also show the effectiveness of the proposed design." @default.
- W3176276396 created "2021-07-05" @default.
- W3176276396 creator A5005324197 @default.
- W3176276396 creator A5005651230 @default.
- W3176276396 creator A5021790939 @default.
- W3176276396 creator A5037709424 @default.
- W3176276396 creator A5057904986 @default.
- W3176276396 creator A5060335798 @default.
- W3176276396 creator A5077825743 @default.
- W3176276396 date "2021-06-01" @default.
- W3176276396 modified "2023-10-06" @default.
- W3176276396 title "Reinforced Attention for Few-Shot Learning and Beyond" @default.
- W3176276396 cites W2112796928 @default.
- W3176276396 cites W2119717200 @default.
- W3176276396 cites W2145339207 @default.
- W3176276396 cites W2179488730 @default.
- W3176276396 cites W2194775991 @default.
- W3176276396 cites W2469312016 @default.
- W3176276396 cites W2565729570 @default.
- W3176276396 cites W2738318237 @default.
- W3176276396 cites W2741727820 @default.
- W3176276396 cites W2798644314 @default.
- W3176276396 cites W2798836702 @default.
- W3176276396 cites W2843098267 @default.
- W3176276396 cites W2892034740 @default.
- W3176276396 cites W2895189911 @default.
- W3176276396 cites W2895615633 @default.
- W3176276396 cites W2943351376 @default.
- W3176276396 cites W2962849838 @default.
- W3176276396 cites W2962851329 @default.
- W3176276396 cites W2962895018 @default.
- W3176276396 cites W2963321993 @default.
- W3176276396 cites W2963362748 @default.
- W3176276396 cites W2964105864 @default.
- W3176276396 cites W2964935470 @default.
- W3176276396 cites W3000133216 @default.
- W3176276396 cites W3009081299 @default.
- W3176276396 cites W3012255272 @default.
- W3176276396 cites W3034339621 @default.
- W3176276396 cites W3035102141 @default.
- W3176276396 cites W3035143213 @default.
- W3176276396 cites W3035262841 @default.
- W3176276396 cites W3093163175 @default.
- W3176276396 cites W3096805028 @default.
- W3176276396 cites W3110214837 @default.
- W3176276396 doi "https://doi.org/10.1109/cvpr46437.2021.00097" @default.
- W3176276396 hasPublicationYear "2021" @default.
- W3176276396 type Work @default.
- W3176276396 sameAs 3176276396 @default.
- W3176276396 citedByCount "27" @default.
- W3176276396 countsByYear W31762763962021 @default.
- W3176276396 countsByYear W31762763962022 @default.
- W3176276396 countsByYear W31762763962023 @default.
- W3176276396 crossrefType "proceedings-article" @default.
- W3176276396 hasAuthorship W3176276396A5005324197 @default.
- W3176276396 hasAuthorship W3176276396A5005651230 @default.
- W3176276396 hasAuthorship W3176276396A5021790939 @default.
- W3176276396 hasAuthorship W3176276396A5037709424 @default.
- W3176276396 hasAuthorship W3176276396A5057904986 @default.
- W3176276396 hasAuthorship W3176276396A5060335798 @default.
- W3176276396 hasAuthorship W3176276396A5077825743 @default.
- W3176276396 hasBestOaLocation W31762763962 @default.
- W3176276396 hasConcept C115961682 @default.
- W3176276396 hasConcept C119857082 @default.
- W3176276396 hasConcept C127413603 @default.
- W3176276396 hasConcept C138885662 @default.
- W3176276396 hasConcept C14036430 @default.
- W3176276396 hasConcept C153180895 @default.
- W3176276396 hasConcept C154945302 @default.
- W3176276396 hasConcept C17744445 @default.
- W3176276396 hasConcept C178790620 @default.
- W3176276396 hasConcept C185592680 @default.
- W3176276396 hasConcept C199539241 @default.
- W3176276396 hasConcept C201995342 @default.
- W3176276396 hasConcept C2776359362 @default.
- W3176276396 hasConcept C2776401178 @default.
- W3176276396 hasConcept C2778344882 @default.
- W3176276396 hasConcept C2780451532 @default.
- W3176276396 hasConcept C2992734406 @default.
- W3176276396 hasConcept C41008148 @default.
- W3176276396 hasConcept C41608201 @default.
- W3176276396 hasConcept C41895202 @default.
- W3176276396 hasConcept C59404180 @default.
- W3176276396 hasConcept C75294576 @default.
- W3176276396 hasConcept C78458016 @default.
- W3176276396 hasConcept C78519656 @default.
- W3176276396 hasConcept C86803240 @default.
- W3176276396 hasConcept C94625758 @default.
- W3176276396 hasConcept C97541855 @default.
- W3176276396 hasConcept C97931131 @default.
- W3176276396 hasConceptScore W3176276396C115961682 @default.
- W3176276396 hasConceptScore W3176276396C119857082 @default.
- W3176276396 hasConceptScore W3176276396C127413603 @default.
- W3176276396 hasConceptScore W3176276396C138885662 @default.
- W3176276396 hasConceptScore W3176276396C14036430 @default.
- W3176276396 hasConceptScore W3176276396C153180895 @default.
- W3176276396 hasConceptScore W3176276396C154945302 @default.
- W3176276396 hasConceptScore W3176276396C17744445 @default.
- W3176276396 hasConceptScore W3176276396C178790620 @default.
- W3176276396 hasConceptScore W3176276396C185592680 @default.