Matches in SemOpenAlex for { <https://semopenalex.org/work/W3176277941> ?p ?o ?g. }
- W3176277941 endingPage "1531" @default.
- W3176277941 startingPage "1531" @default.
- W3176277941 abstract "A sleep disorder is a medical condition that affects an individual’s regular sleeping pattern and routine, hence negatively affecting the individual’s health. The traditional procedures of identifying sleep disorders by clinicians involve questionnaires and polysomnography (PSG), which are subjective, time-consuming, and inconvenient. Hence, an automated sleep disorder identification is required to overcome these limitations. In the proposed study, we have proposed a method using electroencephalogram (EEG) signals for the automated identification of six sleep disorders, namely insomnia, nocturnal frontal lobe epilepsy (NFLE), narcolepsy, rapid eye movement behavior disorder (RBD), periodic leg movement disorder (PLM), and sleep-disordered breathing (SDB). To the best of our belief, this is one of the first studies ever undertaken to identify sleep disorders using EEG signals employing cyclic alternating pattern (CAP) sleep database. After sleep-scoring EEG epochs, we have created eight different data subsets of EEG epochs to develop the proposed model. A novel optimal triplet half-band filter bank (THFB) is used to obtain the subbands of EEG signals. We have extracted Hjorth parameters from subbands of EEG epochs. The selected features are fed to various supervised machine learning algorithms for the automated classification of sleep disorders. Our proposed system has obtained the highest accuracy of 99.2%, 98.2%, 96.2%, 98.3%, 98.8%, and 98.8% for insomnia, narcolepsy, NFLE, PLM, RBD, and SDB classes against normal healthy subjects, respectively, applying ensemble boosted trees classifier. As a result, we have attained the highest accuracy of 91.3% to identify the type of sleep disorder. The proposed method is simple, fast, efficient, and may reduce the challenges faced by medical practitioners during the diagnosis of various sleep disorders accurately in less time at sleep clinics and homes." @default.
- W3176277941 created "2021-07-05" @default.
- W3176277941 creator A5032232319 @default.
- W3176277941 creator A5052353239 @default.
- W3176277941 creator A5057990837 @default.
- W3176277941 creator A5074179735 @default.
- W3176277941 date "2021-06-25" @default.
- W3176277941 modified "2023-10-16" @default.
- W3176277941 title "Automated Identification of Sleep Disorder Types Using Triplet Half-Band Filter and Ensemble Machine Learning Techniques with EEG Signals" @default.
- W3176277941 cites W2024668293 @default.
- W3176277941 cites W2051205161 @default.
- W3176277941 cites W2134050473 @default.
- W3176277941 cites W2144932102 @default.
- W3176277941 cites W2145850223 @default.
- W3176277941 cites W2151487996 @default.
- W3176277941 cites W2152336966 @default.
- W3176277941 cites W2163166459 @default.
- W3176277941 cites W2183061846 @default.
- W3176277941 cites W2296057527 @default.
- W3176277941 cites W2329911816 @default.
- W3176277941 cites W2556445044 @default.
- W3176277941 cites W2558317411 @default.
- W3176277941 cites W2565892404 @default.
- W3176277941 cites W2568045458 @default.
- W3176277941 cites W2790222081 @default.
- W3176277941 cites W2802503051 @default.
- W3176277941 cites W2809558661 @default.
- W3176277941 cites W2866637366 @default.
- W3176277941 cites W2884790510 @default.
- W3176277941 cites W2890628112 @default.
- W3176277941 cites W2902751862 @default.
- W3176277941 cites W2914838500 @default.
- W3176277941 cites W2915196348 @default.
- W3176277941 cites W2923821914 @default.
- W3176277941 cites W2941208518 @default.
- W3176277941 cites W2965851497 @default.
- W3176277941 cites W2974652413 @default.
- W3176277941 cites W2986716295 @default.
- W3176277941 cites W3010279674 @default.
- W3176277941 cites W3011654399 @default.
- W3176277941 cites W3012201445 @default.
- W3176277941 cites W3015178329 @default.
- W3176277941 cites W3044458085 @default.
- W3176277941 cites W3091952751 @default.
- W3176277941 cites W3115292829 @default.
- W3176277941 cites W3120897863 @default.
- W3176277941 cites W3127301893 @default.
- W3176277941 cites W3134862796 @default.
- W3176277941 cites W3137501664 @default.
- W3176277941 cites W3158061033 @default.
- W3176277941 cites W4232259028 @default.
- W3176277941 cites W4239510810 @default.
- W3176277941 cites W4240595641 @default.
- W3176277941 cites W4297645036 @default.
- W3176277941 doi "https://doi.org/10.3390/electronics10131531" @default.
- W3176277941 hasPublicationYear "2021" @default.
- W3176277941 type Work @default.
- W3176277941 sameAs 3176277941 @default.
- W3176277941 citedByCount "19" @default.
- W3176277941 countsByYear W31762779412021 @default.
- W3176277941 countsByYear W31762779412022 @default.
- W3176277941 countsByYear W31762779412023 @default.
- W3176277941 crossrefType "journal-article" @default.
- W3176277941 hasAuthorship W3176277941A5032232319 @default.
- W3176277941 hasAuthorship W3176277941A5052353239 @default.
- W3176277941 hasAuthorship W3176277941A5057990837 @default.
- W3176277941 hasAuthorship W3176277941A5074179735 @default.
- W3176277941 hasBestOaLocation W31762779411 @default.
- W3176277941 hasConcept C118552586 @default.
- W3176277941 hasConcept C1513209611 @default.
- W3176277941 hasConcept C153180895 @default.
- W3176277941 hasConcept C154945302 @default.
- W3176277941 hasConcept C15744967 @default.
- W3176277941 hasConcept C16568411 @default.
- W3176277941 hasConcept C20566671 @default.
- W3176277941 hasConcept C2778186239 @default.
- W3176277941 hasConcept C2778205975 @default.
- W3176277941 hasConcept C2779494582 @default.
- W3176277941 hasConcept C2781210498 @default.
- W3176277941 hasConcept C2910364982 @default.
- W3176277941 hasConcept C41008148 @default.
- W3176277941 hasConcept C522805319 @default.
- W3176277941 hasConcept C548259974 @default.
- W3176277941 hasConcept C71924100 @default.
- W3176277941 hasConceptScore W3176277941C118552586 @default.
- W3176277941 hasConceptScore W3176277941C1513209611 @default.
- W3176277941 hasConceptScore W3176277941C153180895 @default.
- W3176277941 hasConceptScore W3176277941C154945302 @default.
- W3176277941 hasConceptScore W3176277941C15744967 @default.
- W3176277941 hasConceptScore W3176277941C16568411 @default.
- W3176277941 hasConceptScore W3176277941C20566671 @default.
- W3176277941 hasConceptScore W3176277941C2778186239 @default.
- W3176277941 hasConceptScore W3176277941C2778205975 @default.
- W3176277941 hasConceptScore W3176277941C2779494582 @default.
- W3176277941 hasConceptScore W3176277941C2781210498 @default.
- W3176277941 hasConceptScore W3176277941C2910364982 @default.
- W3176277941 hasConceptScore W3176277941C41008148 @default.
- W3176277941 hasConceptScore W3176277941C522805319 @default.