Matches in SemOpenAlex for { <https://semopenalex.org/work/W3176285300> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W3176285300 endingPage "108248" @default.
- W3176285300 startingPage "108248" @default.
- W3176285300 abstract "Millimeter wave (mmWave) communications have been introduced in the 5G standardization process due to their attractive potential to provide a huge capacity extension to traditional sub-6 GHz technologies. However, such high-frequency communications are characterized by harsh propagation conditions, thus requiring base stations to be densely deployed. Integrated access and backhaul (IAB) network architecture proposed by 3GPP is gaining momentum as the most promising and cost-effective solution to this need of network densification. IAB networks’ available resources need to be carefully tuned in a complex setting, including directional transmissions, device heterogeneity, and intermittent links with different levels of availability that quickly change over time. It is hard for traditional optimization techniques to provide alone the best performance in these conditions. We believe that Deep Reinforcement Learning (DRL) techniques, especially assisted with Long Short-Term Memory (LSTM), can implicitly capture the regularities of environment dynamics and learn the best resource allocation strategy in networks affected by obstacle blockages. In this article, we propose a DRL based framework based on the Column Generation (CG) that shows remarkable effectiveness in addressing routing and link scheduling in mmWawe 5G IAB networks in realistic scenarios." @default.
- W3176285300 created "2021-07-05" @default.
- W3176285300 creator A5029356525 @default.
- W3176285300 creator A5036091683 @default.
- W3176285300 creator A5067711389 @default.
- W3176285300 creator A5090156476 @default.
- W3176285300 date "2021-09-01" @default.
- W3176285300 modified "2023-10-02" @default.
- W3176285300 title "Resource allocation in mmWave 5G IAB networks: A reinforcement learning approach based on column generation" @default.
- W3176285300 cites W2064675550 @default.
- W3176285300 cites W2147435437 @default.
- W3176285300 cites W2157338470 @default.
- W3176285300 cites W2234862916 @default.
- W3176285300 cites W2603333335 @default.
- W3176285300 cites W2626889522 @default.
- W3176285300 cites W2782558820 @default.
- W3176285300 cites W2782733179 @default.
- W3176285300 cites W2786608596 @default.
- W3176285300 cites W2898754723 @default.
- W3176285300 cites W2907304237 @default.
- W3176285300 cites W2907595871 @default.
- W3176285300 cites W2950332045 @default.
- W3176285300 cites W2962964490 @default.
- W3176285300 cites W2980962294 @default.
- W3176285300 cites W2988291387 @default.
- W3176285300 cites W3023434827 @default.
- W3176285300 doi "https://doi.org/10.1016/j.comnet.2021.108248" @default.
- W3176285300 hasPublicationYear "2021" @default.
- W3176285300 type Work @default.
- W3176285300 sameAs 3176285300 @default.
- W3176285300 citedByCount "7" @default.
- W3176285300 countsByYear W31762853002022 @default.
- W3176285300 countsByYear W31762853002023 @default.
- W3176285300 crossrefType "journal-article" @default.
- W3176285300 hasAuthorship W3176285300A5029356525 @default.
- W3176285300 hasAuthorship W3176285300A5036091683 @default.
- W3176285300 hasAuthorship W3176285300A5067711389 @default.
- W3176285300 hasAuthorship W3176285300A5090156476 @default.
- W3176285300 hasBestOaLocation W31762853002 @default.
- W3176285300 hasConcept C126042441 @default.
- W3176285300 hasConcept C126255220 @default.
- W3176285300 hasConcept C154945302 @default.
- W3176285300 hasConcept C168956720 @default.
- W3176285300 hasConcept C206345919 @default.
- W3176285300 hasConcept C2780551164 @default.
- W3176285300 hasConcept C2780609101 @default.
- W3176285300 hasConcept C29202148 @default.
- W3176285300 hasConcept C31258907 @default.
- W3176285300 hasConcept C33923547 @default.
- W3176285300 hasConcept C41008148 @default.
- W3176285300 hasConcept C97541855 @default.
- W3176285300 hasConceptScore W3176285300C126042441 @default.
- W3176285300 hasConceptScore W3176285300C126255220 @default.
- W3176285300 hasConceptScore W3176285300C154945302 @default.
- W3176285300 hasConceptScore W3176285300C168956720 @default.
- W3176285300 hasConceptScore W3176285300C206345919 @default.
- W3176285300 hasConceptScore W3176285300C2780551164 @default.
- W3176285300 hasConceptScore W3176285300C2780609101 @default.
- W3176285300 hasConceptScore W3176285300C29202148 @default.
- W3176285300 hasConceptScore W3176285300C31258907 @default.
- W3176285300 hasConceptScore W3176285300C33923547 @default.
- W3176285300 hasConceptScore W3176285300C41008148 @default.
- W3176285300 hasConceptScore W3176285300C97541855 @default.
- W3176285300 hasFunder F4320322725 @default.
- W3176285300 hasLocation W31762853001 @default.
- W3176285300 hasLocation W31762853002 @default.
- W3176285300 hasOpenAccess W3176285300 @default.
- W3176285300 hasPrimaryLocation W31762853001 @default.
- W3176285300 hasRelatedWork W2129095758 @default.
- W3176285300 hasRelatedWork W2969525674 @default.
- W3176285300 hasRelatedWork W3010301175 @default.
- W3176285300 hasRelatedWork W3128915313 @default.
- W3176285300 hasRelatedWork W3157334690 @default.
- W3176285300 hasRelatedWork W3163420794 @default.
- W3176285300 hasRelatedWork W4200192754 @default.
- W3176285300 hasRelatedWork W4285609099 @default.
- W3176285300 hasRelatedWork W4301184554 @default.
- W3176285300 hasRelatedWork W4362709110 @default.
- W3176285300 hasVolume "196" @default.
- W3176285300 isParatext "false" @default.
- W3176285300 isRetracted "false" @default.
- W3176285300 magId "3176285300" @default.
- W3176285300 workType "article" @default.