Matches in SemOpenAlex for { <https://semopenalex.org/work/W3176287551> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W3176287551 abstract "A syllabus is one of the most important clues in the analysis of the educational activities. Our previous works reported that the course syllabi of computer science (CS) curricula from about 47 universities can disclose the interesting structures in the CS curricula. However, the course syllabi were collected manually. Therefore, it was difficult to increase the number of syllabi largely, and semi-automatic crawling of massive course syllabi is needed for further analysis. We have been studying to collect syllabus information based on the contents of a large number of web pages downloaded from the university's website by using a general-purpose web crawler. We discovered the structures of the syllabus pages to some extent automatically by using the linear support vector machine (linear SVM). We used the top page of the target department educating bachelor's degree in CS field as a start page of crawling for each university. To look for such a department's page, we sometimes used Google search. Google Custom Search API <sup xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>1</sup> ,(Google API) is expected to provide an efficient way to gather syllabus information while saving computation time, storage, and other resources. In this study, we propose a hybrid method which combines Google API as a general keyword search engine and linear SVM as content-based classification models. We developed a system to support the syllabus collection process. The system consists of three subsystems: Crawler, Classifier, and Database. Crawler is the combination of Google API and general-purpose web crawler. We can search syllabus-related web pages from university websites using Google API with syllabus-related search keywords and domain names of the websites. Classifier ranks pages related to CS syllabus from a large number of web pages according to the confidence scores of the linear SVM. We trained the decision model of linear SVM using the syllabus pages we collected in the former studies. Using the pages obtained from Google API and linear SVM, we can find a list of CS syllabus pages from more universities than using each method alone. Combining the top nine of Google API results and the top two of linear SVM's decision model, we obtained the CS syllabus pages from more than 96.6% of the 58 universities." @default.
- W3176287551 created "2021-07-05" @default.
- W3176287551 creator A5005207269 @default.
- W3176287551 creator A5014996232 @default.
- W3176287551 creator A5029259830 @default.
- W3176287551 creator A5030426191 @default.
- W3176287551 date "2021-04-21" @default.
- W3176287551 modified "2023-10-04" @default.
- W3176287551 title "A Proposal for a Hybrid Syllabus Search Tool that Combines Keyword Search and Content Based Classification" @default.
- W3176287551 cites W1573640501 @default.
- W3176287551 cites W1969733229 @default.
- W3176287551 cites W1989085221 @default.
- W3176287551 cites W1997058184 @default.
- W3176287551 cites W2078679261 @default.
- W3176287551 cites W2091093779 @default.
- W3176287551 cites W2093847094 @default.
- W3176287551 cites W2154886364 @default.
- W3176287551 cites W2773936161 @default.
- W3176287551 cites W2808112872 @default.
- W3176287551 cites W3012445868 @default.
- W3176287551 doi "https://doi.org/10.1109/educon46332.2021.9454140" @default.
- W3176287551 hasPublicationYear "2021" @default.
- W3176287551 type Work @default.
- W3176287551 sameAs 3176287551 @default.
- W3176287551 citedByCount "1" @default.
- W3176287551 countsByYear W31762875512022 @default.
- W3176287551 crossrefType "proceedings-article" @default.
- W3176287551 hasAuthorship W3176287551A5005207269 @default.
- W3176287551 hasAuthorship W3176287551A5014996232 @default.
- W3176287551 hasAuthorship W3176287551A5029259830 @default.
- W3176287551 hasAuthorship W3176287551A5030426191 @default.
- W3176287551 hasConcept C100368936 @default.
- W3176287551 hasConcept C105702510 @default.
- W3176287551 hasConcept C124101348 @default.
- W3176287551 hasConcept C136764020 @default.
- W3176287551 hasConcept C13743948 @default.
- W3176287551 hasConcept C145420912 @default.
- W3176287551 hasConcept C15744967 @default.
- W3176287551 hasConcept C173576120 @default.
- W3176287551 hasConcept C19417346 @default.
- W3176287551 hasConcept C21959979 @default.
- W3176287551 hasConcept C23123220 @default.
- W3176287551 hasConcept C33923547 @default.
- W3176287551 hasConcept C41008148 @default.
- W3176287551 hasConcept C45504901 @default.
- W3176287551 hasConcept C47177190 @default.
- W3176287551 hasConcept C71924100 @default.
- W3176287551 hasConcept C73340581 @default.
- W3176287551 hasConcept C79373723 @default.
- W3176287551 hasConceptScore W3176287551C100368936 @default.
- W3176287551 hasConceptScore W3176287551C105702510 @default.
- W3176287551 hasConceptScore W3176287551C124101348 @default.
- W3176287551 hasConceptScore W3176287551C136764020 @default.
- W3176287551 hasConceptScore W3176287551C13743948 @default.
- W3176287551 hasConceptScore W3176287551C145420912 @default.
- W3176287551 hasConceptScore W3176287551C15744967 @default.
- W3176287551 hasConceptScore W3176287551C173576120 @default.
- W3176287551 hasConceptScore W3176287551C19417346 @default.
- W3176287551 hasConceptScore W3176287551C21959979 @default.
- W3176287551 hasConceptScore W3176287551C23123220 @default.
- W3176287551 hasConceptScore W3176287551C33923547 @default.
- W3176287551 hasConceptScore W3176287551C41008148 @default.
- W3176287551 hasConceptScore W3176287551C45504901 @default.
- W3176287551 hasConceptScore W3176287551C47177190 @default.
- W3176287551 hasConceptScore W3176287551C71924100 @default.
- W3176287551 hasConceptScore W3176287551C73340581 @default.
- W3176287551 hasConceptScore W3176287551C79373723 @default.
- W3176287551 hasLocation W31762875511 @default.
- W3176287551 hasOpenAccess W3176287551 @default.
- W3176287551 hasPrimaryLocation W31762875511 @default.
- W3176287551 hasRelatedWork W1506122440 @default.
- W3176287551 hasRelatedWork W1673346501 @default.
- W3176287551 hasRelatedWork W2026132847 @default.
- W3176287551 hasRelatedWork W2042201515 @default.
- W3176287551 hasRelatedWork W2051135816 @default.
- W3176287551 hasRelatedWork W2161927007 @default.
- W3176287551 hasRelatedWork W2548298479 @default.
- W3176287551 hasRelatedWork W2783570127 @default.
- W3176287551 hasRelatedWork W3216588747 @default.
- W3176287551 hasRelatedWork W4300913644 @default.
- W3176287551 isParatext "false" @default.
- W3176287551 isRetracted "false" @default.
- W3176287551 magId "3176287551" @default.
- W3176287551 workType "article" @default.