Matches in SemOpenAlex for { <https://semopenalex.org/work/W3176290106> ?p ?o ?g. }
- W3176290106 abstract "Abstract Background The study of plant phenotype by deep learning has received increased interest in recent years, which impressive progress has been made in the fields of plant breeding. Deep learning extremely relies on a large amount of training data to extract and recognize target features in the field of plant phenotype classification and recognition tasks. However, for some flower cultivars identification tasks with a huge number of cultivars, it is difficult for traditional deep learning methods to achieve better recognition results with limited sample data. Thus, a method based on metric learning for flower cultivars identification is proposed to solve this problem. Results We added center loss to the classification network to make inter-class samples disperse and intra-class samples compact, the script of ResNet18, ResNet50, and DenseNet121 were used for feature extraction. To evaluate the effectiveness of the proposed method, a public dataset Oxford 102 Flowers dataset and two novel datasets constructed by us are chosen. For the method of joint supervision of center loss and L 2 -softmax loss, the test accuracy rate is 91.88%, 97.34%, and 99.82% across three datasets, respectively. Feature distribution observed by T-distributed stochastic neighbor embedding (T-SNE) verifies the effectiveness of the method presented above. Conclusions An efficient metric learning method has been described for flower cultivars identification task, which not only provides high recognition rates but also makes the feature extracted from the recognition network interpretable. This study demonstrated that the proposed method provides new ideas for the application of a small amount of data in the field of identification, and has important reference significance for the flower cultivars identification research." @default.
- W3176290106 created "2021-07-05" @default.
- W3176290106 creator A5001892611 @default.
- W3176290106 creator A5008971512 @default.
- W3176290106 creator A5011870473 @default.
- W3176290106 creator A5020952048 @default.
- W3176290106 creator A5030610789 @default.
- W3176290106 creator A5038459257 @default.
- W3176290106 creator A5063724348 @default.
- W3176290106 date "2021-06-22" @default.
- W3176290106 modified "2023-10-10" @default.
- W3176290106 title "Metric learning for image-based flower cultivars identification" @default.
- W3176290106 cites W1677182931 @default.
- W3176290106 cites W1928854072 @default.
- W3176290106 cites W2110992213 @default.
- W3176290106 cites W2117539524 @default.
- W3176290106 cites W2194775991 @default.
- W3176290106 cites W2353457699 @default.
- W3176290106 cites W2467863620 @default.
- W3176290106 cites W2520774990 @default.
- W3176290106 cites W2533598788 @default.
- W3176290106 cites W2541344361 @default.
- W3176290106 cites W2733608569 @default.
- W3176290106 cites W2797908940 @default.
- W3176290106 cites W2799437918 @default.
- W3176290106 cites W2904218366 @default.
- W3176290106 cites W2912922175 @default.
- W3176290106 cites W2919115771 @default.
- W3176290106 cites W2963749936 @default.
- W3176290106 cites W2963801405 @default.
- W3176290106 cites W2993609452 @default.
- W3176290106 doi "https://doi.org/10.1186/s13007-021-00767-w" @default.
- W3176290106 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8220695" @default.
- W3176290106 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34158091" @default.
- W3176290106 hasPublicationYear "2021" @default.
- W3176290106 type Work @default.
- W3176290106 sameAs 3176290106 @default.
- W3176290106 citedByCount "8" @default.
- W3176290106 countsByYear W31762901062021 @default.
- W3176290106 countsByYear W31762901062022 @default.
- W3176290106 countsByYear W31762901062023 @default.
- W3176290106 crossrefType "journal-article" @default.
- W3176290106 hasAuthorship W3176290106A5001892611 @default.
- W3176290106 hasAuthorship W3176290106A5008971512 @default.
- W3176290106 hasAuthorship W3176290106A5011870473 @default.
- W3176290106 hasAuthorship W3176290106A5020952048 @default.
- W3176290106 hasAuthorship W3176290106A5030610789 @default.
- W3176290106 hasAuthorship W3176290106A5038459257 @default.
- W3176290106 hasAuthorship W3176290106A5063724348 @default.
- W3176290106 hasBestOaLocation W31762901061 @default.
- W3176290106 hasConcept C108583219 @default.
- W3176290106 hasConcept C116834253 @default.
- W3176290106 hasConcept C119857082 @default.
- W3176290106 hasConcept C127413603 @default.
- W3176290106 hasConcept C138885662 @default.
- W3176290106 hasConcept C144027150 @default.
- W3176290106 hasConcept C153180895 @default.
- W3176290106 hasConcept C154945302 @default.
- W3176290106 hasConcept C176217482 @default.
- W3176290106 hasConcept C188441871 @default.
- W3176290106 hasConcept C197321923 @default.
- W3176290106 hasConcept C202444582 @default.
- W3176290106 hasConcept C21547014 @default.
- W3176290106 hasConcept C2776091240 @default.
- W3176290106 hasConcept C2776401178 @default.
- W3176290106 hasConcept C33923547 @default.
- W3176290106 hasConcept C41008148 @default.
- W3176290106 hasConcept C41608201 @default.
- W3176290106 hasConcept C41895202 @default.
- W3176290106 hasConcept C52622490 @default.
- W3176290106 hasConcept C59822182 @default.
- W3176290106 hasConcept C86803240 @default.
- W3176290106 hasConcept C9652623 @default.
- W3176290106 hasConceptScore W3176290106C108583219 @default.
- W3176290106 hasConceptScore W3176290106C116834253 @default.
- W3176290106 hasConceptScore W3176290106C119857082 @default.
- W3176290106 hasConceptScore W3176290106C127413603 @default.
- W3176290106 hasConceptScore W3176290106C138885662 @default.
- W3176290106 hasConceptScore W3176290106C144027150 @default.
- W3176290106 hasConceptScore W3176290106C153180895 @default.
- W3176290106 hasConceptScore W3176290106C154945302 @default.
- W3176290106 hasConceptScore W3176290106C176217482 @default.
- W3176290106 hasConceptScore W3176290106C188441871 @default.
- W3176290106 hasConceptScore W3176290106C197321923 @default.
- W3176290106 hasConceptScore W3176290106C202444582 @default.
- W3176290106 hasConceptScore W3176290106C21547014 @default.
- W3176290106 hasConceptScore W3176290106C2776091240 @default.
- W3176290106 hasConceptScore W3176290106C2776401178 @default.
- W3176290106 hasConceptScore W3176290106C33923547 @default.
- W3176290106 hasConceptScore W3176290106C41008148 @default.
- W3176290106 hasConceptScore W3176290106C41608201 @default.
- W3176290106 hasConceptScore W3176290106C41895202 @default.
- W3176290106 hasConceptScore W3176290106C52622490 @default.
- W3176290106 hasConceptScore W3176290106C59822182 @default.
- W3176290106 hasConceptScore W3176290106C86803240 @default.
- W3176290106 hasConceptScore W3176290106C9652623 @default.
- W3176290106 hasFunder F4320321001 @default.
- W3176290106 hasIssue "1" @default.
- W3176290106 hasLocation W31762901061 @default.
- W3176290106 hasLocation W31762901062 @default.